What controls the Fe II strength in active galactic nuclei?

Xiao Bo Dong, Jian Guo Wang, Luis C. Ho, Ting Gui Wang, Xiaohui Fan, Huiyuan Wang, Hongyan Zhou, Weimin Yuan

Research output: Contribution to journalArticlepeer-review

68 Scopus citations


We used a large, homogeneous sample of 4178 z ≤ 0.8 Seyfert 1 galaxies and QSOs selected from the Sloan Digital Sky Survey to investigate the strength of Fe II emission and its correlation with other emission lines and physical parameters of active galactic nuclei. We find that the strongest correlations of almost all the emission-line intensity ratios and equivalent widths (EWs) are with the Eddington ratio (L/LEdd), rather than with the continuum luminosity at 5100 Å (L5100) or black hole mass (M BH); the only exception is the EW of ultraviolet Fe II emission, which does not correlate at all with broad-line width, L5100, M BH, or L/LEdd. By contrast, the intensity ratios of both the ultraviolet and optical Fe II emission to Mg II λ2800 correlate quite strongly with L/LEdd. Interestingly, among all the emission lines in the near-UV and optical studied in this paper (including Mg II λ2800, Hβ, and [O III] λ5007), the EW of narrow optical Fe II emission has the strongest correlation with L/LEdd. We hypothesize that the variation of the emission-line strength in active galaxies is regulated by L/LEdd because it governs the global distribution of the hydrogen column density of the clouds gravitationally bound in the line-emitting region, as well as its overall gas supply. The systematic dependence on L/L Edd must be corrected when using the Fe II/Mg II intensity ratio as a measure of the Fe/Mg abundance ratio to study the history of chemical evolution in QSO environments.

Original languageEnglish (US)
Article number86
JournalAstrophysical Journal
Issue number2
StatePublished - Aug 1 2011


  • accretion, accretion disks
  • galaxies: active
  • line: formation
  • quasars: emission lines
  • quasars: general

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science


Dive into the research topics of 'What controls the Fe II strength in active galactic nuclei?'. Together they form a unique fingerprint.

Cite this