Warm ice giant GJ 3470b - II. Revised planetary and stellar parameters from optical to near-infrared transit photometry

Lauren I. Biddle, Kyle A. Pearson, Ian J.M. Crossfield, Benjamin J. Fulton, Simona Ciceri, Jason Eastman, Travis Barman, Andrew W. Mann, Gregory W. Henry, Andrew W. Howard, Michael H. Williamson, Evan Sinukoff, Diana Dragomir, Laura Vican, Luigi Mancini, John Southworth, Adam Greenberg, Jake D. Turner, Robert Thompson, Brian W. TaylorStephen E. Levine, Matthew W. Webber

Research output: Contribution to journalArticlepeer-review

53 Scopus citations


It is important to explore the diversity of characteristics of low-mass, low-density planets to understand the nature and evolution of this class of planets. We present a homogeneous analysis of 12 new and 9 previously published broad-band photometric observations of the Uranus-sized extrasolar planet GJ 3470b, which belongs to the growing sample of sub-Jovian bodies orbiting M dwarfs. The consistency of our analysis explains some of the discrepancies between previously published results and provides updated constraints on the planetary parameters. Our data are also consistent with previous transit observations of this system. The physical properties of the transiting system can only be constrained as well as the host star is characterized, so we provide new spectroscopic measurements of GJ 3470 from 0.33 to 2.42 μm to aid our analysis. We find R* = 0.48 ± 0.04 R⊙, M* = 0.51 ± 0.06 M⊙, and Teff = 3652 ± 50K for GJ 3470, along with a rotation period of 20.70 ± 0.15 d and an R-band amplitude of 0.01 mag, which is small enough that current transit measurements should not be strongly affected by stellar variability. However, to report definitively whether stellar activity has a significant effect on the light curves, this requires future multiwavelength, multi-epoch studies of GJ 3470. We also present the most precise orbital ephemeris for this system: To = 2455983.70472 ± 0.00021BJDTDB, P = 3.336 6487+0.000 0043 -0.000 0033 d, and we see no evidence for transit timing variations greater than 1 min. Our reported planet to star radius ratio is 0.076 42 ± 0.000 37. The physical parameters of this planet are Rp = 3.88 ± 0.32 R and Mp = 13.73 ± 1.61 M. Because of our revised stellar parameters, the planetary radius we present is smaller than previously reported values. We also perform a second analysis of the transmission spectrum of the entire ensemble of transit observations to date, supporting the existence of an H2-dominated atmosphere exhibiting a strong Rayleigh scattering slope.

Original languageEnglish (US)
Pages (from-to)1810-1820
Number of pages11
JournalMonthly Notices of the Royal Astronomical Society
Issue number2
StatePublished - Apr 2014


  • Eclipses
  • Infrared stars
  • Planets and satellites: atmospheres
  • Stars: individual: GJ 3470
  • Techniques: photometric
  • Techniques: spectroscopic

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science


Dive into the research topics of 'Warm ice giant GJ 3470b - II. Revised planetary and stellar parameters from optical to near-infrared transit photometry'. Together they form a unique fingerprint.

Cite this