Abstract
Purpose: The mammalian target of rapamycin (mTOR) inhibitor temsirolimus has exhibited promising anticancer activity for the treatment of renal cell cancers (RCC). Survivin expression has been implicated in drug resistance and reducing its levels with the histone deacetylase (HDAC) inhibitor vorinostat may enhance the anticancer activity of temsirolimus. Experimental Design: The sensitivity of RCC cell lines to the combination of temsirolimus and vorinostat was determined by measuring cell viability, clonogenic survival, and apoptosis. The effects of this combination on survivin levels were determined in vitro and in vivo. Survivin expression was silenced using small interfering RNA to evaluate its role in determining sensitivity to temsirolimus and vorinostat. The effect of the combination on angiogenesis was also determined in RCC xenograft models. Results: Vorinostat synergistically improved the anticancer activity of temsirolimus in a panel of RCC cell lines in vitro and in two xenograft models in vivo. While each single agent led to a modest decrease in survivin levels, the combination dramatically reduced its expression, which correlated with an induction of apoptosis. Silencing survivin levels induced apoptosis and significantly improved the efficacy of temsirolimus and vorinostat. In addition, the temsirolimus/vorinostat combination led to a strong reduction in angiogenesis. Conclusions: Vorinostat augmented the anticancer activity of temsirolimus in both in vitro and in vivo models of RCC. The effectiveness of the combination was due to a decrease in survivin levels and corresponding induction of apoptosis, and enhanced inhibition of angiogenesis. Targeting survivin may be a promising therapeutic strategy to improve RCC therapy.
Original language | English (US) |
---|---|
Pages (from-to) | 141-153 |
Number of pages | 13 |
Journal | Clinical Cancer Research |
Volume | 16 |
Issue number | 1 |
DOIs | |
State | Published - Jan 1 2010 |
Externally published | Yes |
ASJC Scopus subject areas
- General Medicine