@inproceedings{b7bff35020764bf59244f02a4fd67f95,
title = "Volume holographic lens spectrum-splitting photovoltaic system for high energy yield with direct and diffuse solar illumination",
abstract = "In this paper a prototype spectrum-splitting photovoltaic system based on volume holographic lenses (VHL) is designed, fabricated and tested. In spectrum-splitting systems, incident sunlight is divided in spectral bands for optimal conversion by a set of single-junction PV cells that are laterally separated. The VHL spectrumsplitting system in this paper has a form factor similar to conventional silicon PV modules but with higher efficiencies (>30%). Unlike many other spectrum-splitting systems that have been proposed in the past, the system in this work converts both direct and diffuse sunlight while using inexpensive 1-axis tracking systems. The VHL system uses holographic lenses that focus light at a transition wavelength to the boundary between two PV cells. Longer wavelength light is dispersed to the narrow bandgap cell and shorter wavelength light to the wide bandgap cell. A prototype system is designed with silicon and GaAs PV cells. The holographic lenses are fabricated in Covestro Bayfol HX photopolymer by 'stitching' together lens segments through sequential masked exposures. The PV cells and holographic lenses were characterized and the data was used in a raytrace simulation and predicts an improvement in total power output of 15.2% compared to a non-spectrum-splitting reference. A laboratory measurement yielded an improvement in power output of 8.5%.",
keywords = "Covestro bayfol HX, Diffuse sunlight, High efficiency, Holographic optical elements, Photovoltaics, Spectrum splitting",
author = "Chrysler, {Benjamin D.} and Yuechen Wu and Zhengshan Yu and Kostuk, {Raymond K.}",
note = "Publisher Copyright: {\textcopyright} 2017 SPIE.; Next Generation Technologies for Solar Energy Conversion VIII 2017 ; Conference date: 08-08-2017 Through 09-08-2017",
year = "2017",
doi = "10.1117/12.2273204",
language = "English (US)",
series = "Proceedings of SPIE - The International Society for Optical Engineering",
publisher = "SPIE",
editor = "Gavin Conibeer and Sulima, {Oleg V.}",
booktitle = "Next Generation Technologies for Solar Energy Conversion VIII",
}