@inproceedings{3c75b5226666456ebd7df8976283199f,
title = "Voltage linear transformation circuit design",
abstract = "Many engineering projects require automated control of analog voltages over a specified range. We have developed a computer interface comprising custom hardware and MATLAB code to provide real-time control of a Thorlabs adaptive optics (AO) kit. The hardware interface includes an op amp cascade to linearly shift and scale a voltage range. With easy modifications, any linear transformation can be accommodated. In AO applications, the design is suitable to drive a range of different types of deformable and fast steering mirrors (FSM's). Our original motivation and application was to control an Optics in Motion (OIM) FSM which requires the customer to devise a unique interface to supply voltages to the mirror controller to set the mirror's angular deflection. The FSM is in an optical servo loop with a wave front sensor (WFS), which controls the dynamic behavior of the mirror's deflection. The code acquires wavefront data from the WFS and fits a plane, which is subsequently converted into its corresponding angular deflection. The FSM provides ±3° optical angular deflection for a ±10 V voltage swing. Voltages are applied to the mirror via a National Instruments digital-to-analog converter (DAC) followed by an op amp cascade circuit. This system has been integrated into our Thorlabs AO testbed which currently runs at 11 Hz, but with planned software upgrades, the system update rate is expected to improve to 500 Hz. To show that the FSM subsystem is ready for this speed, we conducted two different PID tuning runs at different step commands. Once 500 Hz is achieved, we plan to make the code and method for our interface solution freely available to the community.",
keywords = "Adaptive Optics, Circuit Design, Fast Steering Mirror, Laboratory Education, Wavefront Sensor",
author = "Sanchez, {Lucas R.W.} and Jin, {Moon Seob} and Scott, {R. Phillip} and Luder, {Ryan J.} and Michael Hart",
note = "Publisher Copyright: {\textcopyright} 2017 SPIE.; Astronomical Optics: Design, Manufacture, and Test of Space and Ground Systems 2017 ; Conference date: 06-08-2017 Through 10-08-2017",
year = "2017",
month = sep,
day = "7",
doi = "10.1117/12.2276166",
language = "English (US)",
series = "Proceedings of SPIE - The International Society for Optical Engineering",
publisher = "SPIE",
editor = "Hull, {Tony B.} and Pascal Hallibert and Kim, {Dae Wook}",
booktitle = "Astronomical Optics",
}