Abstract
Background: Individuals with diabetes have a higher risk of falls and fall-related injuries. People with diabetes often develop peripheral neuropathy (DPN) as well as nerve damage throughout the body. In particular, reduced lower extremity proprioception due to DPN may cause a misjudgment of foot position and thus increase the risk of fall. Objective: An innovative virtual obstacle-crossing paradigm using wearable sensors was developed in an attempt to assess lower extremity position perception damage due to DPN. Methods: 67 participants (age 55.4 ± 8.9, BMI 28.1 ± 5.8) including diabetics with and without DPN as well as aged-matched healthy controls were recruited. Severity of neuropathy was quantified using a vibratory perception threshold (VPT) test. The ability of perception of lower extremity was quantified by measuring obstacle-crossing success rate (OCSR), toe-obstacle clearance (TOC), and reaction time (TR) while crossing a series of virtual obstacles with heights at 10% and 20% of the subject's leg length. Results: No significant difference was found between groups for age and BMI. The data revealed that DPN subjects had a significantly lower OCSR compared to diabetics with no neuropathy and controls at an obstacle size of 10% of leg length (p < 0.05). DPN subjects also demonstrated longer TR compared to other groups and for both obstacle sizes. In addition, TOC was reduced in neuropathy groups. Interestingly, a significant correlation between TR and VPT (r = 0.5, p < 10-3) was observed indicating a delay in reaction with increasing neuropathy severity. The delay becomes more pronounced by increasing the size of the obstacle. Using a regression model suggests that the change in TR between obstacle sizes of 10% and 20% of leg length is the most sensitive predictor for neuropathy severity with an odds ratio of 2.70 (p = 0.02). Conclusion: The findings demonstrate proof of a concept of virtual-reality application as a promising method for objective assessment of neuropathy severity, however a further study is warranted to establish a stronger relationship between the measured parameters and neuropathy.
Original language | English (US) |
---|---|
Pages (from-to) | 463-471 |
Number of pages | 9 |
Journal | Gerontology |
Volume | 58 |
Issue number | 5 |
DOIs | |
State | Published - Aug 2012 |
Keywords
- Body-worn sensors
- Diabetes peripheral neuropathy
- Fall prevention
- Lower extremity joint perception
- Obstacle crossing
- Virtual reality
ASJC Scopus subject areas
- Aging
- Geriatrics and Gerontology