TY - JOUR
T1 - Vibrational Fine Structure in the Valence Ionizations of Transition-Metal Hexacarbonyls
T2 - New Experimental Indication of Metal-to-Carbonyl π Bonding
AU - Hubbard, John L.
AU - Lichtenberger, Dennis L.
PY - 1982
Y1 - 1982
N2 - The first observations of metal-carbon vibrational structure in photoionization bands are reported. Attention is focused on the predominantly metal d ionizations of M(CO)6 (M = Cr, Mo, and W), and the methods for obtaining high resolution and very high signal-to-noise He I ionization data are detailed. The 2T2g ionization band of Cr(CO)6 and the spin-orbit split 2E″ and 2U′ bands of W(CO)6 show distinct vibrational progressions which correspond to the totally symmetric (a1g) metal-carbon stretching mode in the positive ion states. The metal-carbon stretching frequencies are found to be significantly less in the positive ion states than in the ground states, indicating a reduction of metal-carbon bond order upon the loss of a t2g electron. Evaluation of the vibrational progressions shows that the metal-carbon bond length increases on the order of 0.10 Å upon t2g ionization in the case of W(CO)6 and about 0.14 Å in the case of Cr(CO)6. In addition, the beginning of a short progression in the a1g carbon-oxygen stretching mode is observed in the Mo(CO)6 spectrum and is clearly seen in the W(CO)6 spectrum. All of these observations show that removal of an electron from the predominantly metal t2g orbitals, which are strictly π symmetry with respect to the carbonyls, substantially weakens the metal-to-carbonyl bond.
AB - The first observations of metal-carbon vibrational structure in photoionization bands are reported. Attention is focused on the predominantly metal d ionizations of M(CO)6 (M = Cr, Mo, and W), and the methods for obtaining high resolution and very high signal-to-noise He I ionization data are detailed. The 2T2g ionization band of Cr(CO)6 and the spin-orbit split 2E″ and 2U′ bands of W(CO)6 show distinct vibrational progressions which correspond to the totally symmetric (a1g) metal-carbon stretching mode in the positive ion states. The metal-carbon stretching frequencies are found to be significantly less in the positive ion states than in the ground states, indicating a reduction of metal-carbon bond order upon the loss of a t2g electron. Evaluation of the vibrational progressions shows that the metal-carbon bond length increases on the order of 0.10 Å upon t2g ionization in the case of W(CO)6 and about 0.14 Å in the case of Cr(CO)6. In addition, the beginning of a short progression in the a1g carbon-oxygen stretching mode is observed in the Mo(CO)6 spectrum and is clearly seen in the W(CO)6 spectrum. All of these observations show that removal of an electron from the predominantly metal t2g orbitals, which are strictly π symmetry with respect to the carbonyls, substantially weakens the metal-to-carbonyl bond.
UR - http://www.scopus.com/inward/record.url?scp=0000568547&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0000568547&partnerID=8YFLogxK
U2 - 10.1021/ja00372a008
DO - 10.1021/ja00372a008
M3 - Article
AN - SCOPUS:0000568547
SN - 0002-7863
VL - 104
SP - 2132
EP - 2138
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 8
ER -