TY - JOUR
T1 - Van der Waals interactions between hydrocarbon molecules and zeolites
T2 - Periodic calculations at different levels of theory, from density functional theory to the random phase approximation and Moller-Plesset perturbation theory
AU - Göltl, Florian
AU - Grüneis, Andreas
AU - Bučko, Tomas
AU - Hafner, Jürgen
N1 - Funding Information:
F.G. has been supported by the Austrian Science Funds (Fonds zur Förderung der wissenschaftlichen Forschung - FWF) within the Science College “Computational Materials Science” (Project No. W401). The calculations have been performed using the computers of the Vienna Scientific Cluster (VSC). A.G. gratefully acknowledges an APART-fellowship of the Austrian Academy of Sciences.
PY - 2012/9/21
Y1 - 2012/9/21
N2 - The adsorption of small alkane molecules in purely siliceous and protonated chabazite has been investigated at different levels of theory: (i) density-functional (DFT) calculations with a gradient-corrected exchange-correlation functional; DFT calculations using the Perdew-Burke- Ernzerhof (PBE) functional with corrections for the missing dispersion forces in the form of C6R6 pair potentials with (ii) C6 parameters and vdW radii determined by fitting accurate energies for a large molecular data base (PBE-d) or (iii) derived from atoms in a solid calculations; (iv) DFT calculations using a non-local correlation functional constructed such as to account for dispersion forces (vdW-DF); (v) calculations based on the random phase approximation (RPA) combined with the adiabatic-coupling fluctuation-dissipation theorem; and (vi) using Hartree-Fock (HF) calculations together with correlation energies calculated using second-order Moller-Plesset (MP2) perturbation theory. All calculations have been performed for periodic models of the zeolite and using a plane-wave basis and the projector-augmented wave method. The simpler and computationally less demanding approaches (i)-(iv) permit a calculation of the forces acting on the atoms using the Hellmann-Feynman theorem and further a structural optimization of the adsorbate-zeolite complex, while RPA and MP2 calculations can be performed only for a fixed geometry optimized at a lower level of theory. The influence of elevated temperature has been taken into account by averaging the adsorption energies calculated for purely siliceous and protonated chabazite, with weighting factors determined by molecular dynamics calculations with dispersion-corrected forces from DFT. Compared to experiment, the RPA underestimates the adsorption energies by about 5kJ/mol while MP2 leads to an overestimation by about 6 kJ/Mol (averaged over methane, ethane, and propane). The most accurate results have been found for the hybrid RPA-HF method with an average error of less than 2 kJ/mol only, while RPA underestimates the adsorption energies by about 8 kJ/mol on average. MP2 overestimates the adsorption energies slightly, with an average error of 5 kJ/mol. The more approximate and computationally less demanding methods such as the vdW-DF density functional or the C6R6 pair potentials with C 6 parameters from atoms in a solid calculations overestimate the adsorption energies quite strongly. Relatively good agreement with experiment is achieved with the empirical PBEd method with an average error of about 5 kJ/mol.
AB - The adsorption of small alkane molecules in purely siliceous and protonated chabazite has been investigated at different levels of theory: (i) density-functional (DFT) calculations with a gradient-corrected exchange-correlation functional; DFT calculations using the Perdew-Burke- Ernzerhof (PBE) functional with corrections for the missing dispersion forces in the form of C6R6 pair potentials with (ii) C6 parameters and vdW radii determined by fitting accurate energies for a large molecular data base (PBE-d) or (iii) derived from atoms in a solid calculations; (iv) DFT calculations using a non-local correlation functional constructed such as to account for dispersion forces (vdW-DF); (v) calculations based on the random phase approximation (RPA) combined with the adiabatic-coupling fluctuation-dissipation theorem; and (vi) using Hartree-Fock (HF) calculations together with correlation energies calculated using second-order Moller-Plesset (MP2) perturbation theory. All calculations have been performed for periodic models of the zeolite and using a plane-wave basis and the projector-augmented wave method. The simpler and computationally less demanding approaches (i)-(iv) permit a calculation of the forces acting on the atoms using the Hellmann-Feynman theorem and further a structural optimization of the adsorbate-zeolite complex, while RPA and MP2 calculations can be performed only for a fixed geometry optimized at a lower level of theory. The influence of elevated temperature has been taken into account by averaging the adsorption energies calculated for purely siliceous and protonated chabazite, with weighting factors determined by molecular dynamics calculations with dispersion-corrected forces from DFT. Compared to experiment, the RPA underestimates the adsorption energies by about 5kJ/mol while MP2 leads to an overestimation by about 6 kJ/Mol (averaged over methane, ethane, and propane). The most accurate results have been found for the hybrid RPA-HF method with an average error of less than 2 kJ/mol only, while RPA underestimates the adsorption energies by about 8 kJ/mol on average. MP2 overestimates the adsorption energies slightly, with an average error of 5 kJ/mol. The more approximate and computationally less demanding methods such as the vdW-DF density functional or the C6R6 pair potentials with C 6 parameters from atoms in a solid calculations overestimate the adsorption energies quite strongly. Relatively good agreement with experiment is achieved with the empirical PBEd method with an average error of about 5 kJ/mol.
UR - http://www.scopus.com/inward/record.url?scp=84866950174&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84866950174&partnerID=8YFLogxK
U2 - 10.1063/1.4750979
DO - 10.1063/1.4750979
M3 - Article
C2 - 22998253
AN - SCOPUS:84866950174
SN - 0021-9606
VL - 137
JO - Journal of Chemical Physics
JF - Journal of Chemical Physics
IS - 11
M1 - 114111
ER -