TY - JOUR
T1 - van der Waals heterostructures combining graphene and hexagonal boron nitride
AU - Yankowitz, Matthew
AU - Ma, Qiong
AU - Jarillo-Herrero, Pablo
AU - LeRoy, Brian J.
N1 - Funding Information:
B.J.L. acknowledges the support of the US Army Research Office under grant W911NF-14-1-0653. Research reviewed by P.J.-H. and Q.M. has been supported by the Center for Excitonics, an Energy Frontier Research Center funded by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (BES), under award number DESC0001088, US Air Force Office of Scientific Research (AFOSR) grant FA9550-16-1-0382, the National Science Foundation under award DMR-1405221, the Gordon and Betty Moore Foundation’s Emergent Phenomena in Quantum Systems (EPiQS) Initiative through grant GBMF4541 and the US DOE, Office of BES, Division of Materials Sciences and Engineering, under award number DE-SC0001819.
Publisher Copyright:
© 2018, The Author(s), under exclusive licence to Springer Nature Limited.
PY - 2019/2/1
Y1 - 2019/2/1
N2 - As the first in a large family of 2D van der Waals (vdW) materials, graphene has attracted enormous attention owing to its remarkable properties. The recent development of simple experimental techniques for combining graphene with other atomically thin vdW crystals to form heterostructures has enabled the exploration of the properties of these so-called vdW heterostructures. Hexagonal boron nitride is the second most popular vdW material after graphene, owing to the new physics and device properties of vdW heterostructures combining the two. Hexagonal boron nitride can act as a featureless dielectric substrate for graphene, enabling devices with ultralow disorder that allow access to the intrinsic physics of graphene, such as the integer and fractional quantum Hall effects. Additionally, under certain circumstances, hexagonal boron nitride can modify the optical and electronic properties of graphene in new ways, inducing the appearance of secondary Dirac points or driving new plasmonic states. Integrating other vdW materials into these heterostructures and tuning their new degrees of freedom, such as the relative rotation between crystals and their interlayer spacing, provide a path for engineering and manipulating nearly limitless new physics and device properties.
AB - As the first in a large family of 2D van der Waals (vdW) materials, graphene has attracted enormous attention owing to its remarkable properties. The recent development of simple experimental techniques for combining graphene with other atomically thin vdW crystals to form heterostructures has enabled the exploration of the properties of these so-called vdW heterostructures. Hexagonal boron nitride is the second most popular vdW material after graphene, owing to the new physics and device properties of vdW heterostructures combining the two. Hexagonal boron nitride can act as a featureless dielectric substrate for graphene, enabling devices with ultralow disorder that allow access to the intrinsic physics of graphene, such as the integer and fractional quantum Hall effects. Additionally, under certain circumstances, hexagonal boron nitride can modify the optical and electronic properties of graphene in new ways, inducing the appearance of secondary Dirac points or driving new plasmonic states. Integrating other vdW materials into these heterostructures and tuning their new degrees of freedom, such as the relative rotation between crystals and their interlayer spacing, provide a path for engineering and manipulating nearly limitless new physics and device properties.
UR - http://www.scopus.com/inward/record.url?scp=85082336807&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85082336807&partnerID=8YFLogxK
U2 - 10.1038/s42254-018-0016-0
DO - 10.1038/s42254-018-0016-0
M3 - Review article
AN - SCOPUS:85082336807
SN - 2522-5820
VL - 1
SP - 112
EP - 125
JO - Nature Reviews Physics
JF - Nature Reviews Physics
IS - 2
ER -