TY - JOUR
T1 - Valence-bond analysis of extended Hubbard models
T2 - Charge-transfer excitations of molecular conductors
AU - Mazumdar, S.
AU - Soos, Z. G.
PY - 1981
Y1 - 1981
N2 - The low-energy charge transfer (CT) excitation characteristic of both -molecular conductors and complex-ion-radical salts is interpreted as a nearest-neighbor Coulomb interaction V that is comparable to the bandwidth, 4|t|. Partly filled segregated regular stacks in organic conductors are represented by extended Hubbard models, whose exact CT energies and intensities are obtained by diagrammatic valence-bond (VB) methods for four electrons on finite rings and chains, together with an approximate treatment of V in partly filled infinite stacks for infinite on-site correlations U. Finite V4|t| yields an intense low-lying CT band, containing V and U-2V excitations, that depends weakly on the band filling. Finite V also splits the usual CT absorption around U for half filled bands into strong absorptions around U-V, weak ones around U, and much weaker bands around U+V and U+2V. The CT spectra of mixed-valence tetrathiofulvalene (TTF) salts are modeled with V0.4 eV, U1.4 eV, and |t|0.10-0.13 eV. Similar CT transitions in complex tetracyanoquinodimethane (TCNQ) salts are consistent with the insensitivity of the V peak's position to the filling or the structure. Restricting the basis to one valence state per site produces several general consequences for dipole-allowed optical transitions.
AB - The low-energy charge transfer (CT) excitation characteristic of both -molecular conductors and complex-ion-radical salts is interpreted as a nearest-neighbor Coulomb interaction V that is comparable to the bandwidth, 4|t|. Partly filled segregated regular stacks in organic conductors are represented by extended Hubbard models, whose exact CT energies and intensities are obtained by diagrammatic valence-bond (VB) methods for four electrons on finite rings and chains, together with an approximate treatment of V in partly filled infinite stacks for infinite on-site correlations U. Finite V4|t| yields an intense low-lying CT band, containing V and U-2V excitations, that depends weakly on the band filling. Finite V also splits the usual CT absorption around U for half filled bands into strong absorptions around U-V, weak ones around U, and much weaker bands around U+V and U+2V. The CT spectra of mixed-valence tetrathiofulvalene (TTF) salts are modeled with V0.4 eV, U1.4 eV, and |t|0.10-0.13 eV. Similar CT transitions in complex tetracyanoquinodimethane (TCNQ) salts are consistent with the insensitivity of the V peak's position to the filling or the structure. Restricting the basis to one valence state per site produces several general consequences for dipole-allowed optical transitions.
UR - http://www.scopus.com/inward/record.url?scp=0001291095&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0001291095&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.23.2810
DO - 10.1103/PhysRevB.23.2810
M3 - Article
AN - SCOPUS:0001291095
SN - 0163-1829
VL - 23
SP - 2810
EP - 2823
JO - Physical Review B
JF - Physical Review B
IS - 6
ER -