Using MODIS BRDF and albedo data to evaluate global model land surface albedo

Zhuo Wang, X. Zeng, M. Barlage, R. E. Dickinson, F. Gao, C. B. Schaaf

Research output: Contribution to journalArticlepeer-review

86 Scopus citations

Abstract

The land surface albedo in the NCAR Community Climate System Model (CCSM2) is calculated based on a two-stream approximation, which does not include the effect of three-dimensional vegetation structure on radiative transfer. The model albedo (including monthly averaged albedo, direct albedo at local noon, and the solar zenith angle dependence of albedo) is evaluated using the Moderate Resolution Imaging Spectroradiometer (MODIS) Bidirectional Reflectance Distribution Function (BRDF) and albedo data acquired during July 2001-July 2002. The model monthly averaged albedos in February and July are close to the MODIS white-sky albedos (within 0.02 or statistically insignificant) over about 40% of the global land between 60°S and 70°N. However, CCSM2 significantly underestimates albedo by 0.05 or more over deserts (e.g., the Sahara Desert) and some semiarid regions (e.g., parts of Australia). The difference between the model direct albedo at local noon and the MODIS black-sky albedo for the near-infrared (NIR) band (with wavelength > 0.7 μm) is larger than the difference for the visible band (with wavelength < 0.7 μm) for most snow-free regions. For eleven model grid cells with different dominant plant functional types, the model diffuse NIR albedo is higher by 0.05 or more than the MODIS white-sky albedo in five of these cells. Direct albedos from the model and MODIS (as computed using the BRDF parameters) increase with solar zenith angles, but model albedo increases faster than the MODIS data. These analyses and the MODIS BRDF and albedo data provide a starting point toward developing a BRDF-based treatment of radiative transfer through a canopy for land surface models that can realistically simulate the mean albedo and the solar zenith angle dependence of albedo.

Original languageEnglish (US)
Pages (from-to)3-14
Number of pages12
JournalJournal of Hydrometeorology
Volume5
Issue number1
DOIs
StatePublished - Feb 2004

ASJC Scopus subject areas

  • Atmospheric Science

Fingerprint

Dive into the research topics of 'Using MODIS BRDF and albedo data to evaluate global model land surface albedo'. Together they form a unique fingerprint.

Cite this