TY - JOUR
T1 - Using machine learning to predict optimal electromagnetic induction instrument configurations for characterizing the shallow subsurface
AU - Van'T Veen, Kim Madsen
AU - Ferré, Ty Paul Andrew
AU - Iversen, Bo Vangsø
AU - Børgesen, Christen Duus
N1 - Funding Information:
Acknowledgements. The main author was funded by a PhD scholarship from GSST, Aarhus University. This study was supported by the Innovation Fund Denmark projects “MapField – field-scale mapping for targeted N regulation and management” and “rOpen – open landscape nitrate retention mapping”. This work was carried out and funded as a part of the activities by the Aarhus University Centre for Water Technology (WATEC). We are grateful to the editor, Gerrit H. de Rooij, and the two anonymous referees for their constructive comments that improved the quality of this work.
Publisher Copyright:
© Copyright:
PY - 2022/1/6
Y1 - 2022/1/6
N2 - Electromagnetic induction (EMI) is used widely for hydrological and other environmental studies. The apparent electrical conductivity (ECa), which can be mapped efficiently with EMI, correlates with a variety of important soil attributes. EMI instruments exist with several configurations of coil spacing, orientation, and height. There are general, rule-of-thumb guides to choose an optimal instrument configuration for a specific survey. The goal of this study was to provide a robust and efficient way to design this optimization task. In this investigation, we used machine learning (ML) as an efficient tool for interpolating among the results of many forward model runs. Specifically, we generated an ensemble of 100000 EMI forward models representing the responses of many EMI configurations to a range of three-layer subsurface models. We split the results into training and testing subsets and trained a decision tree (DT) with gradient boosting (GB) to predict the subsurface properties (layer thicknesses and EC values). We further examined the value of prior knowledge that could limit the ranges of some of the soil model parameters. We made use of the intrinsic feature importance measures of machine learning algorithms to identify optimal EMI designs for specific subsurface parameters. The optimal designs identified using this approach agreed with those that are generally recognized as optimal by informed experts for standard survey goals, giving confidence in the ML-based approach. The approach also offered insight that would be difficult, if not impossible, to offer based on rule-of-thumb optimization. We contend that such ML-informed design approaches could be applied broadly to other survey design challenges.
AB - Electromagnetic induction (EMI) is used widely for hydrological and other environmental studies. The apparent electrical conductivity (ECa), which can be mapped efficiently with EMI, correlates with a variety of important soil attributes. EMI instruments exist with several configurations of coil spacing, orientation, and height. There are general, rule-of-thumb guides to choose an optimal instrument configuration for a specific survey. The goal of this study was to provide a robust and efficient way to design this optimization task. In this investigation, we used machine learning (ML) as an efficient tool for interpolating among the results of many forward model runs. Specifically, we generated an ensemble of 100000 EMI forward models representing the responses of many EMI configurations to a range of three-layer subsurface models. We split the results into training and testing subsets and trained a decision tree (DT) with gradient boosting (GB) to predict the subsurface properties (layer thicknesses and EC values). We further examined the value of prior knowledge that could limit the ranges of some of the soil model parameters. We made use of the intrinsic feature importance measures of machine learning algorithms to identify optimal EMI designs for specific subsurface parameters. The optimal designs identified using this approach agreed with those that are generally recognized as optimal by informed experts for standard survey goals, giving confidence in the ML-based approach. The approach also offered insight that would be difficult, if not impossible, to offer based on rule-of-thumb optimization. We contend that such ML-informed design approaches could be applied broadly to other survey design challenges.
UR - http://www.scopus.com/inward/record.url?scp=85122783186&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85122783186&partnerID=8YFLogxK
U2 - 10.5194/hess-26-55-2022
DO - 10.5194/hess-26-55-2022
M3 - Article
AN - SCOPUS:85122783186
SN - 1027-5606
VL - 26
SP - 55
EP - 70
JO - Hydrology and Earth System Sciences
JF - Hydrology and Earth System Sciences
IS - 1
ER -