TY - JOUR
T1 - Using atomic diffraction of Na from material gratings to measure atom-surface interactions
AU - Perreault, John D.
AU - Cronin, Alexander D.
AU - Savas, T. A.
PY - 2005/5
Y1 - 2005/5
N2 - In atom optics a material structure is commonly regarded as an amplitude mask for atom waves. However, atomic diffraction patterns formed using material gratings indicate that material structures also operate as phase masks. In this study a well collimated beam of sodium atoms is used to illuminate a silicon nitride grating with a period of 100 nm. During passage through the grating slots atoms acquire a phase shift due to the van der Waals (vdW) interaction with the grating walls. As a result the relative intensities of the matter-wave diffraction peaks deviate from those expected for a purely absorbing grating. Thus a complex transmission function is required to explain the observed diffraction envelopes. An optics perspective to the theory of atomic diffraction from material gratings is put forth in the hopes of providing a more intuitive picture concerning the influence of the vdW potential. The van der Waals coefficient C3=2.7±0.8meVnm3 is determined by fitting a modified Fresnel optical theory to the experimental data. This value of C3 is consistent with a van der Waals interaction between atomic sodium and a silicon nitride surface.
AB - In atom optics a material structure is commonly regarded as an amplitude mask for atom waves. However, atomic diffraction patterns formed using material gratings indicate that material structures also operate as phase masks. In this study a well collimated beam of sodium atoms is used to illuminate a silicon nitride grating with a period of 100 nm. During passage through the grating slots atoms acquire a phase shift due to the van der Waals (vdW) interaction with the grating walls. As a result the relative intensities of the matter-wave diffraction peaks deviate from those expected for a purely absorbing grating. Thus a complex transmission function is required to explain the observed diffraction envelopes. An optics perspective to the theory of atomic diffraction from material gratings is put forth in the hopes of providing a more intuitive picture concerning the influence of the vdW potential. The van der Waals coefficient C3=2.7±0.8meVnm3 is determined by fitting a modified Fresnel optical theory to the experimental data. This value of C3 is consistent with a van der Waals interaction between atomic sodium and a silicon nitride surface.
UR - http://www.scopus.com/inward/record.url?scp=26944435219&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=26944435219&partnerID=8YFLogxK
U2 - 10.1103/PhysRevA.71.053612
DO - 10.1103/PhysRevA.71.053612
M3 - Article
AN - SCOPUS:26944435219
SN - 1050-2947
VL - 71
JO - Physical Review A - Atomic, Molecular, and Optical Physics
JF - Physical Review A - Atomic, Molecular, and Optical Physics
IS - 5
M1 - 053612
ER -