TY - JOUR
T1 - Upward lightning observations from towers in Rapid City, South Dakota and comparison with National Lightning Detection Network data, 2004-2010
AU - Warner, Tom A.
AU - Cummins, Kenneth L.
AU - Orville, Richard E.
PY - 2012
Y1 - 2012
N2 - We report on upward lightning observations from ten tall towers (91-191 m) in Rapid City, South Dakota, USA and compare with National Lightning Detection Network (NLDN) data. A total of 81 upward flashes were observed from 2004-2010 using GPS time-stamped optical sensors, and in all but one case, visible flash activity preceded the development of the upward leaders. Time-correlated analysis showed that the NLDN recorded an event within 50 km of towers and within 500 ms prior to upward leader development from the tower(s) for 83% (67/81) of the upward flashes. A preceding positive cloud-to-ground stroke (+CG) was detected in 57% (46/81) of the cases, and a preceding positive intracloud flash (+IC) in 23% (19/81) of the cases. However, 8 of the 19 NLDN-indicated +IC events were actually +CG strokes based on optical observations. Preceding negative intracloud flashes (-IC) were recorded for 2% (2/81) of the cases. Analysis also showed that for 44% (36/81) of the upward flashes, the NLDN reported subsequent negative cloud-to-ground (-CG) strokes and/or -IC events at one or more tower locations. Of the 151 subsequent events, 70% (105/151) were -CG reports and 30% (46/151) were listed as -IC events. The geometric mean/median location accuracy and peak current for subsequent events were 194 m/206 m and -12.9 kA/-12.4 kA respectively. These correlated observations suggest that a majority of the upward lightning flashes were triggered by a preceding flash with the dominant triggering type being the +CG flash.
AB - We report on upward lightning observations from ten tall towers (91-191 m) in Rapid City, South Dakota, USA and compare with National Lightning Detection Network (NLDN) data. A total of 81 upward flashes were observed from 2004-2010 using GPS time-stamped optical sensors, and in all but one case, visible flash activity preceded the development of the upward leaders. Time-correlated analysis showed that the NLDN recorded an event within 50 km of towers and within 500 ms prior to upward leader development from the tower(s) for 83% (67/81) of the upward flashes. A preceding positive cloud-to-ground stroke (+CG) was detected in 57% (46/81) of the cases, and a preceding positive intracloud flash (+IC) in 23% (19/81) of the cases. However, 8 of the 19 NLDN-indicated +IC events were actually +CG strokes based on optical observations. Preceding negative intracloud flashes (-IC) were recorded for 2% (2/81) of the cases. Analysis also showed that for 44% (36/81) of the upward flashes, the NLDN reported subsequent negative cloud-to-ground (-CG) strokes and/or -IC events at one or more tower locations. Of the 151 subsequent events, 70% (105/151) were -CG reports and 30% (46/151) were listed as -IC events. The geometric mean/median location accuracy and peak current for subsequent events were 194 m/206 m and -12.9 kA/-12.4 kA respectively. These correlated observations suggest that a majority of the upward lightning flashes were triggered by a preceding flash with the dominant triggering type being the +CG flash.
UR - http://www.scopus.com/inward/record.url?scp=84867521099&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84867521099&partnerID=8YFLogxK
U2 - 10.1029/2012JD018346
DO - 10.1029/2012JD018346
M3 - Article
AN - SCOPUS:84867521099
SN - 2169-897X
VL - 117
JO - Journal of Geophysical Research: Atmospheres
JF - Journal of Geophysical Research: Atmospheres
IS - 19
M1 - D19109
ER -