TY - JOUR
T1 - Upscaling dryland carbon and water fluxes with artificial neural networks of optical, thermal, and microwave satellite remote sensing
AU - Dannenberg, Matthew P.
AU - Barnes, Mallory L.
AU - Smith, William K.
AU - Johnston, Miriam R.
AU - Meerdink, Susan K.
AU - Wang, Xian
AU - Scott, Russell L.
AU - Biederman, Joel A.
N1 - Funding Information:
Matthew P. Dannenberg, Mallory L. Barnes, William K. Smith, and Miriam R. Johnston were supported by the NASA SMAP Science Team (grant number 80NSSC20K1805), and Xian Wang was supported by the NASA FINESST program (grant number 80NSSC19K1335).
Publisher Copyright:
© 2023 Matthew P. Dannenberg et al.
PY - 2023/1/25
Y1 - 2023/1/25
N2 - Earth's drylands are home to more than two billion people, provide key ecosystem services, and exert a large influence on the trends and variability in Earth's carbon cycle. However, modeling dryland carbon and water fluxes with remote sensing suffers from unique challenges not typically encountered in mesic systems, particularly in capturing soil moisture stress. Here, we develop and evaluate an approach for the joint modeling of dryland gross primary production (GPP), net ecosystem exchange (NEE), and evapotranspiration (ET) in the western United States (US) using a suite of AmeriFlux eddy covariance sites spanning major functional types and aridity regimes. We use artificial neural networks (ANNs) to predict dryland ecosystem fluxes by fusing optical vegetation indices, multitemporal thermal observations, and microwave soil moisture and temperature retrievals from the Soil Moisture Active Passive (SMAP) sensor. Our new dryland ANN (DrylANNd) carbon and water flux model explains more than 70% of monthly variance in GPP and ET, improving upon existing MODIS GPP and ET estimates at most dryland eddy covariance sites. DrylANNd predictions of NEE were considerably worse than its predictions of GPP and ET likely because soil and plant respiratory processes are largely invisible to satellite sensors. Optical vegetation indices, particularly the normalized difference vegetation index (NDVI) and near-infrared reflectance of vegetation (NIRv), were generally the most important variables contributing to model skill. However, daytime and nighttime land surface temperatures and SMAP soil moisture and soil temperature also contributed to model skill, with SMAP especially improving model predictions of shrubland, grassland, and savanna fluxes and land surface temperatures improving predictions in evergreen needleleaf forests. Our results show that a combination of optical vegetation indices and thermal infrared and microwave observations can substantially improve estimates of carbon and water fluxes in drylands, potentially providing the means to better monitor vegetation function and ecosystem services in these important regions that are undergoing rapid hydroclimatic change.
AB - Earth's drylands are home to more than two billion people, provide key ecosystem services, and exert a large influence on the trends and variability in Earth's carbon cycle. However, modeling dryland carbon and water fluxes with remote sensing suffers from unique challenges not typically encountered in mesic systems, particularly in capturing soil moisture stress. Here, we develop and evaluate an approach for the joint modeling of dryland gross primary production (GPP), net ecosystem exchange (NEE), and evapotranspiration (ET) in the western United States (US) using a suite of AmeriFlux eddy covariance sites spanning major functional types and aridity regimes. We use artificial neural networks (ANNs) to predict dryland ecosystem fluxes by fusing optical vegetation indices, multitemporal thermal observations, and microwave soil moisture and temperature retrievals from the Soil Moisture Active Passive (SMAP) sensor. Our new dryland ANN (DrylANNd) carbon and water flux model explains more than 70% of monthly variance in GPP and ET, improving upon existing MODIS GPP and ET estimates at most dryland eddy covariance sites. DrylANNd predictions of NEE were considerably worse than its predictions of GPP and ET likely because soil and plant respiratory processes are largely invisible to satellite sensors. Optical vegetation indices, particularly the normalized difference vegetation index (NDVI) and near-infrared reflectance of vegetation (NIRv), were generally the most important variables contributing to model skill. However, daytime and nighttime land surface temperatures and SMAP soil moisture and soil temperature also contributed to model skill, with SMAP especially improving model predictions of shrubland, grassland, and savanna fluxes and land surface temperatures improving predictions in evergreen needleleaf forests. Our results show that a combination of optical vegetation indices and thermal infrared and microwave observations can substantially improve estimates of carbon and water fluxes in drylands, potentially providing the means to better monitor vegetation function and ecosystem services in these important regions that are undergoing rapid hydroclimatic change.
UR - http://www.scopus.com/inward/record.url?scp=85147297565&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85147297565&partnerID=8YFLogxK
U2 - 10.5194/bg-20-383-2023
DO - 10.5194/bg-20-383-2023
M3 - Article
AN - SCOPUS:85147297565
SN - 1726-4170
VL - 20
SP - 383
EP - 404
JO - Biogeosciences
JF - Biogeosciences
IS - 2
ER -