TY - GEN
T1 - Unsupervised Change Detection using DRE-CUSUM
AU - Adiga, Sudarshan
AU - Tandon, Ravi
N1 - Publisher Copyright:
© 2022 IEEE.
PY - 2022
Y1 - 2022
N2 - This paper presents DRE-CUSUM, an unsupervised density-ratio estimation (DRE) based approach to determine statistical changes in time-series data when no knowledge of the pre-and post-change distributions are available. The core idea behind the proposed approach is to split the time-series at an arbitrary point and estimate the ratio of densities of distribution (using a parametric model such as a neural network) before and after the split point. The DRE-CUSUM change detection statistic is then derived from the cumulative sum (CUSUM) of the logarithm of the estimated density ratio. We present a theoretical justification as well as accuracy guarantees which show that the proposed statistic can reliably detect statistical changes, irrespective of the split point. While there have been prior works on using density ratio based methods for change detection, to the best of our knowledge, this is the first unsupervised change detection approach with a theoretical justification and accuracy guarantees. The simplicity of the proposed framework makes it readily applicable in various practical settings (including high-dimensional time-series data); we also discuss generalizations for online change detection. We experimentally show the superiority of DRE-CUSUM using both synthetic and real-world datasets over existing state-of-the-art unsupervised algorithms (such as Bayesian online change detection, its variants as well as several other heuristic methods). Full version of the paper available in [1].
AB - This paper presents DRE-CUSUM, an unsupervised density-ratio estimation (DRE) based approach to determine statistical changes in time-series data when no knowledge of the pre-and post-change distributions are available. The core idea behind the proposed approach is to split the time-series at an arbitrary point and estimate the ratio of densities of distribution (using a parametric model such as a neural network) before and after the split point. The DRE-CUSUM change detection statistic is then derived from the cumulative sum (CUSUM) of the logarithm of the estimated density ratio. We present a theoretical justification as well as accuracy guarantees which show that the proposed statistic can reliably detect statistical changes, irrespective of the split point. While there have been prior works on using density ratio based methods for change detection, to the best of our knowledge, this is the first unsupervised change detection approach with a theoretical justification and accuracy guarantees. The simplicity of the proposed framework makes it readily applicable in various practical settings (including high-dimensional time-series data); we also discuss generalizations for online change detection. We experimentally show the superiority of DRE-CUSUM using both synthetic and real-world datasets over existing state-of-the-art unsupervised algorithms (such as Bayesian online change detection, its variants as well as several other heuristic methods). Full version of the paper available in [1].
UR - http://www.scopus.com/inward/record.url?scp=85150207791&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85150207791&partnerID=8YFLogxK
U2 - 10.1109/IEEECONF56349.2022.10052079
DO - 10.1109/IEEECONF56349.2022.10052079
M3 - Conference contribution
AN - SCOPUS:85150207791
T3 - Conference Record - Asilomar Conference on Signals, Systems and Computers
SP - 1103
EP - 1110
BT - 56th Asilomar Conference on Signals, Systems and Computers, ACSSC 2022
A2 - Matthews, Michael B.
PB - IEEE Computer Society
T2 - 56th Asilomar Conference on Signals, Systems and Computers, ACSSC 2022
Y2 - 31 October 2022 through 2 November 2022
ER -