TY - JOUR
T1 - Unraveling the Chinese hamster ovary cell line transcriptome by next-generation sequencing
AU - Becker, Jennifer
AU - Hackl, Matthias
AU - Rupp, Oliver
AU - Jakobi, Tobias
AU - Schneider, Jessica
AU - Szczepanowski, Rafael
AU - Bekel, Thomas
AU - Borth, Nicole
AU - Goesmann, Alexander
AU - Grillari, Johannes
AU - Kaltschmidt, Christian
AU - Noll, Thomas
AU - Pühler, Alfred
AU - Tauch, Andreas
AU - Brinkrolf, Karina
N1 - Funding Information:
JB, TJ, and JS acknowledge the receipt of a scholarship from the CLIB Graduate Cluster Industrial Biotechnology. MH is supported by a BOCU DOC grant. NB and JG are supported by FWF Biotop, JG is supported by GENAU.
PY - 2011/12/10
Y1 - 2011/12/10
N2 - The pyrosequencing technology from 454 Life Sciences and a novel assembly approach for cDNA sequences with the Newbler Assembler were used to achieve a major step forward to unravel the transcriptome of Chinese hamster ovary (CHO) cells. Normalized cDNA libraries originating from several cell lines and diverse culture conditions were sequenced and the resulting 1.84 million reads were assembled into 32,801 contiguous sequences, 29,184 isotigs, and 24,576 isogroups. A taxonomic classification of the isotigs showed that more than 70% of the assembled data is most similar to the transcriptome of Mus musculus, with most of the remaining isotigs being homologous to DNA sequences from Rattus norvegicus. Mapping of the CHO cell line contigs to the mouse transcriptome demonstrated that 9124 mouse transcripts, representing 6701 genes, are covered by more than 95% of their sequence length. Metabolic pathways of the central carbohydrate metabolism and biosynthesis routes of sugars used for protein N-glycosylation were reconstructed from the transcriptome data. All relevant genes representing major steps in the N-glycosylation pathway of CHO cells were detected. The present manuscript represents a data set of assembled and annotated genes for CHO cells that can now be used for a detailed analysis of the molecular functioning of CHO cell lines.
AB - The pyrosequencing technology from 454 Life Sciences and a novel assembly approach for cDNA sequences with the Newbler Assembler were used to achieve a major step forward to unravel the transcriptome of Chinese hamster ovary (CHO) cells. Normalized cDNA libraries originating from several cell lines and diverse culture conditions were sequenced and the resulting 1.84 million reads were assembled into 32,801 contiguous sequences, 29,184 isotigs, and 24,576 isogroups. A taxonomic classification of the isotigs showed that more than 70% of the assembled data is most similar to the transcriptome of Mus musculus, with most of the remaining isotigs being homologous to DNA sequences from Rattus norvegicus. Mapping of the CHO cell line contigs to the mouse transcriptome demonstrated that 9124 mouse transcripts, representing 6701 genes, are covered by more than 95% of their sequence length. Metabolic pathways of the central carbohydrate metabolism and biosynthesis routes of sugars used for protein N-glycosylation were reconstructed from the transcriptome data. All relevant genes representing major steps in the N-glycosylation pathway of CHO cells were detected. The present manuscript represents a data set of assembled and annotated genes for CHO cells that can now be used for a detailed analysis of the molecular functioning of CHO cell lines.
KW - CDNA
KW - Chinese hamster ovary cell
KW - N-Glycosylation pathway
KW - Next-generation sequencing
UR - http://www.scopus.com/inward/record.url?scp=80054106553&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=80054106553&partnerID=8YFLogxK
U2 - 10.1016/j.jbiotec.2011.09.014
DO - 10.1016/j.jbiotec.2011.09.014
M3 - Article
C2 - 21945585
AN - SCOPUS:80054106553
SN - 0168-1656
VL - 156
SP - 227
EP - 235
JO - Journal of Biotechnology
JF - Journal of Biotechnology
IS - 3
ER -