Understanding Annealing Behavior During Post-Built Heat Treatment of Ni-Based Alloys Across Additive Manufacturing Processes

Juan Gonzalez, Yi Zhang, Andrew Wessman, Jonah Klemm-Toole

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Ni-based alloys are used for high temperature structural components that span from small, highly complex, with fine feature resolution to large, simple shapes with low dimensional tolerances, necessitating the use of processes spanning from laser powder bed fusion (LPBF) to wire arc additive manufacturing (WAAM). However, there is very little understanding about how annealing behavior during post-build heat treatments varies between additive manufacturing processes. In this work, we explore the annealing behavior of IN625 and Haynes 282, manufactured with WAAM and LPBF, under the same annealing conditions. The results of hardness measurements after annealing indicate that for both IN625 and Haynes 282, the LPBF samples show larger decreases in hardness between the as-built condition and after annealing at 1200 °C for 1 h compared to the WAAM samples. LPBF IN625 and Haynes 282 samples annealed at 1200 °C for 1 h, all show complete and partial recrystallization, respectively, whereas none of the WAAM samples annealed at this temperature show recrystallization. For a given alloy, both LPBF and WAAM samples annealed at 1200 °C show particles with compositions consistent with MC carbides that are predicted from thermodynamic simulations. The MC particles present are of similar size and distribution in both LPBF and WAAM samples indicating a similar capacity for these particles to pin moving boundaries during recrystallization. In concert, these results suggest that LPBF samples have more stored energy in the as-built condition compared to their WAAM counterparts, and therefore have a higher driving force for recovery and recrystallization.

Original languageEnglish (US)
Title of host publicationProceedings of the 10th International Symposium on Superalloy 718 and Derivatives, 2023
EditorsEric A. Ott, Joel Andersson, Chantal Sudbrack, Zhongnan Bi, Kevin Bockenstedt, Ian Dempster, Michael Fahrmann, Paul Jablonski, Michael Kirka, Xingbo Liu, Daisuke Nagahama, Tim Smith, Martin Stockinger, Andrew Wessman
PublisherSpringer Science and Business Media Deutschland GmbH
Pages613-627
Number of pages15
ISBN (Print)9783031274466
DOIs
StatePublished - 2023
Event10th International Symposium on Superalloy 718 and Derivatives, 2023 - San Diego, United States
Duration: Mar 19 2023Mar 23 2023

Publication series

NameMinerals, Metals and Materials Series
ISSN (Print)2367-1181
ISSN (Electronic)2367-1696

Conference

Conference10th International Symposium on Superalloy 718 and Derivatives, 2023
Country/TerritoryUnited States
CitySan Diego
Period3/19/233/23/23

Keywords

  • Laser powder bed fusion
  • Post-build heat treatment
  • Wire arc additive manufacturing

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Energy Engineering and Power Technology
  • Mechanics of Materials
  • Metals and Alloys
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Understanding Annealing Behavior During Post-Built Heat Treatment of Ni-Based Alloys Across Additive Manufacturing Processes'. Together they form a unique fingerprint.

Cite this