UNCOVER: A NIRSpec Identification of a Broad-line AGN at z = 8.50

Vasily Kokorev, Seiji Fujimoto, Ivo Labbe, Jenny E. Greene, Rachel Bezanson, Pratika Dayal, Erica J. Nelson, Hakim Atek, Gabriel Brammer, Karina I. Caputi, Iryna Chemerynska, Sam E. Cutler, Robert Feldmann, Yoshinobu Fudamoto, Lukas J. Furtak, Andy D. Goulding, Anna de Graaff, Joel Leja, Danilo Marchesini, Tim B. MillerThemiya Nanayakkara, Pascal A. Oesch, Richard Pan, Sedona H. Price, David J. Setton, Renske Smit, Mauro Stefanon, Bingjie Wang, John R. Weaver, Katherine E. Whitaker, Christina C. Williams, Adi Zitrin

Research output: Contribution to journalArticlepeer-review

12 Scopus citations


Deep observations with the James Webb Space Telescope (JWST) have revealed an emerging population of red pointlike sources that could provide a link between the postulated supermassive black hole seeds and observed quasars. In this work, we present a JWST/NIRSpec spectrum from the JWST Cycle 1 UNCOVER Treasury survey of a massive accreting black hole at z = 8.50 displaying a clear broad-line component as inferred from the Hβ line with FWHM = 3439 ± 413 km s−1, typical of the broad-line region of an active galactic nucleus (AGN). The AGN nature of this object is further supported by high ionization, as inferred from emission lines, and a point-source morphology. We compute a black hole mass of log 10 ( M BH / M ⊙ ) = 8.17 ± 0.42 and a bolometric luminosity of L bol ∼ 6.6 × 1045 erg s−1. These values imply that our object is accreting at ∼40% of the Eddington limit. Detailed modeling of the spectral energy distribution in the optical and near-infrared, together with constraints from ALMA, indicate an upper limit on the stellar mass of log 10 ( M * / M ⊙ ) < 8.7 , which would lead to an unprecedented ratio of black hole to host mass of at least ∼30%. This is orders of magnitude higher compared to the local QSOs but consistent with recent AGN studies at high redshift with JWST. This finding suggests that a nonnegligible fraction of supermassive black holes either started out from massive seeds and/or grew at a super-Eddington rate at high redshift. Given the predicted number densities of high-z faint AGN, future NIRSpec observations of larger samples will allow us to further investigate galaxy-black hole coevolution in the early Universe.

Original languageEnglish (US)
Article numberL7
JournalAstrophysical Journal Letters
Issue number1
StatePublished - Nov 1 2023

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science


Dive into the research topics of 'UNCOVER: A NIRSpec Identification of a Broad-line AGN at z = 8.50'. Together they form a unique fingerprint.

Cite this