Ultrasonic field modeling in multilayered fluid structures using the distributed point source method technique

Sourav Banerjee, Tribikram Kundu, Dominique Placko

Research output: Contribution to journalArticlepeer-review

35 Scopus citations


In the field of nondestructive evaluation (NDE), the newly developed distributed point source method (DPSM) is gradually gaining popularity. DPSM is a semi-analytical technique used to calculate the ultrasonic field (pressure and velocity fields) generated by ultrasonic transducers. This technique is extended in this paper to model the ultrasonic field generated in multilayered nonhomogeneous fluid systems when the ultrasonic transducers are placed on both sides of the layered fluid structure. Two different cases have been analyzed. In the first case, three layers of nonhomogeneous fluids constitute the problem geometry; the higher density fluid is sandwiched between two identical fluid half-spaces. In the second case, four layers of nonhomogeneous fluids have been considered with the fluid density monotonically increasing from the bottom to the top layer. In both cases, analyses have been carried out for two different frequencies of excitation with various orientations of the transducers. As expected, the results show that the ultrasonic field is very sensitive to the fluid properties, the orientation of the fluid layers, and the frequency of excitation. The interaction effect between the transducers is also visible in the computed results. In the pictorial view of the resulting ultrasonic field, the interface between two fluid layers can easily be seen.

Original languageEnglish (US)
Pages (from-to)598-609
Number of pages12
JournalJournal of Applied Mechanics, Transactions ASME
Issue number4
StatePublished - Jul 2006

ASJC Scopus subject areas

  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering


Dive into the research topics of 'Ultrasonic field modeling in multilayered fluid structures using the distributed point source method technique'. Together they form a unique fingerprint.

Cite this