TY - JOUR
T1 - (U-Th)/He and 4He/3He Thermochronology of Secondary Oxides in Faults and Fractures
T2 - A Regional Perspective From Southeastern Arizona
AU - Scoggin, Shane H.
AU - Reiners, Peter W.
AU - Shuster, David L.
AU - Davis, George H.
AU - Ward, Lauren A.
AU - Worthington, James R.
AU - Nickerson, Phillip A.
AU - Evenson, Nathan S.
N1 - Publisher Copyright:
© 2021 The Authors.
PY - 2021/12
Y1 - 2021/12
N2 - Fe- and Mn-oxides are common secondary minerals in faults, fractures, and veins and potentially record information about the timing of fluid movement through their host rocks. These phases are difficult to date by most radioisotopic techniques, but relatively high concentrations of U and Th make the (U-Th)/He system a promising approach. We present new petrographic, geochronologic and thermochronologic analyses of secondary oxides and associated minerals from fault zones and fractures in southeastern Arizona. We use these phases in attempt to constrain the timing of fluid flow and their relationship to magmatic, tectonic, or other regional processes. In the shallowly exhumed Galiuro Mountains, Fe-oxide (U-Th)/He dates correspond to host-rock crystallization and magmatic intrusions from ca. 1.6 to 1.1 Ga. Step-heating 4He/3He experiments and polydomain diffusion modeling of 3He release spectra on these samples are consistent with a crystallite size control on He diffusivity, and little fractional loss of radiogenic He since formation in coarse-grained hematite, but large losses from fine-grained Mn-oxide. In contrast to Proterozoic dates, Fe- and Mn-oxides from the Catalina-Rincon and Pinaleño metamorphic core complexes are exclusively Cenozoic, with dates clustering at ca. 24, 15, and 9 Ma, which represent distinct cooling or fluid-flow episodes during punctuated periods of normal faulting. Finally, a subset of Fe-oxides yield dates of ca. 5 Ma to 6 ka and display either pseudomorphic cubic forms consistent with oxidative retrogression of original pyrite or magnetite, or fine-grained botryoidal morphologies that we interpret to represent approximate ages of recrystallization or pseudomorphic replacement at shallow depths.
AB - Fe- and Mn-oxides are common secondary minerals in faults, fractures, and veins and potentially record information about the timing of fluid movement through their host rocks. These phases are difficult to date by most radioisotopic techniques, but relatively high concentrations of U and Th make the (U-Th)/He system a promising approach. We present new petrographic, geochronologic and thermochronologic analyses of secondary oxides and associated minerals from fault zones and fractures in southeastern Arizona. We use these phases in attempt to constrain the timing of fluid flow and their relationship to magmatic, tectonic, or other regional processes. In the shallowly exhumed Galiuro Mountains, Fe-oxide (U-Th)/He dates correspond to host-rock crystallization and magmatic intrusions from ca. 1.6 to 1.1 Ga. Step-heating 4He/3He experiments and polydomain diffusion modeling of 3He release spectra on these samples are consistent with a crystallite size control on He diffusivity, and little fractional loss of radiogenic He since formation in coarse-grained hematite, but large losses from fine-grained Mn-oxide. In contrast to Proterozoic dates, Fe- and Mn-oxides from the Catalina-Rincon and Pinaleño metamorphic core complexes are exclusively Cenozoic, with dates clustering at ca. 24, 15, and 9 Ma, which represent distinct cooling or fluid-flow episodes during punctuated periods of normal faulting. Finally, a subset of Fe-oxides yield dates of ca. 5 Ma to 6 ka and display either pseudomorphic cubic forms consistent with oxidative retrogression of original pyrite or magnetite, or fine-grained botryoidal morphologies that we interpret to represent approximate ages of recrystallization or pseudomorphic replacement at shallow depths.
UR - http://www.scopus.com/inward/record.url?scp=85121721623&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85121721623&partnerID=8YFLogxK
U2 - 10.1029/2021GC009905
DO - 10.1029/2021GC009905
M3 - Article
AN - SCOPUS:85121721623
SN - 1525-2027
VL - 22
JO - Geochemistry, Geophysics, Geosystems
JF - Geochemistry, Geophysics, Geosystems
IS - 12
M1 - e2021GC009905
ER -