Two-junction holographic spectrum-splitting microconcentrating photovoltaic system

Yuechen Wu, Raymond K. Kostuk

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

Spectrum-splitting is a multijunction photovoltaic technology that can effectively improve the conversion efficiency and reduce the cost of photovoltaic systems. Microscale PV design integrates a group of microconcentrating photovoltaic (CPV) systems into an array. It retains the benefits of CPVand obtains other benefits such as a compact form, improved heat rejection capacity, and more versatile PV cell interconnect configurations. We describe the design and performance of a two-junction holographic spectrum-splitting micro-CPV system that uses GaAs wide bandgap and silicon narrow bandgap PV cells. The performance of the system is simulated with a nonsequential raytracing model and compared to the performance of the highest efficiency PV cell used in the micro-CPVarray. The results show that the proposed system reaches the conversion efficiency of 31.98% with a quantum concentration ratio of 14.41× on the GaAs cell and 0.75× on the silicon cell when illuminated with the direct AM1.5 spectrum. This system obtains an improvement over the best bandgap PV cell of 20.05%, and has an acceptance angle of 6 deg allowing for tolerant tracking.

Original languageEnglish (US)
Article number017001
JournalJournal of Photonics for Energy
Volume7
Issue number1
DOIs
StatePublished - Jan 1 2017

Keywords

  • Concentrating photovoltaics
  • Holography
  • Microscale photovoltaic
  • Solar energy
  • Spectrum splitting

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics
  • Renewable Energy, Sustainability and the Environment

Fingerprint

Dive into the research topics of 'Two-junction holographic spectrum-splitting microconcentrating photovoltaic system'. Together they form a unique fingerprint.

Cite this