TY - JOUR
T1 - Tuning phototactic robots with sensorial delays
AU - Leyman, Maximilian
AU - Ogemark, Freddie
AU - Wehr, Jan
AU - Volpe, Giovanni
N1 - Publisher Copyright:
© 2018 American Physical Society.
PY - 2018/11/16
Y1 - 2018/11/16
N2 - The presence of a delay between sensing and reacting to a signal can determine the long-term behavior of autonomous agents whose motion is intrinsically noisy. In a previous work [Mijalkov, McDaniel, Wehr, and Volpe, Phys. Rev. X 6, 011008 (2016)10.1103/PhysRevX.6.011008], we have shown that sensorial delay can alter the drift and the position probability distribution of an autonomous agent whose speed depends on the illumination intensity it measures. In this work, we consider an agent whose speed and rotational diffusion both depend on the illumination intensity and are subject to two independent sensorial delays. Using theory, simulations, and experiments with a phototactic robot, we study the dependence of the drift and of the probability distribution of the robot's position on the sensorial delays. In particular, the radial drift may have a positive as well as negative sign, and the position probability density peaks in different regions, depending on the choice of the model's parameters. This not only generalizes previous work but also explores new phenomena resulting from the interaction between the two delay variables.
AB - The presence of a delay between sensing and reacting to a signal can determine the long-term behavior of autonomous agents whose motion is intrinsically noisy. In a previous work [Mijalkov, McDaniel, Wehr, and Volpe, Phys. Rev. X 6, 011008 (2016)10.1103/PhysRevX.6.011008], we have shown that sensorial delay can alter the drift and the position probability distribution of an autonomous agent whose speed depends on the illumination intensity it measures. In this work, we consider an agent whose speed and rotational diffusion both depend on the illumination intensity and are subject to two independent sensorial delays. Using theory, simulations, and experiments with a phototactic robot, we study the dependence of the drift and of the probability distribution of the robot's position on the sensorial delays. In particular, the radial drift may have a positive as well as negative sign, and the position probability density peaks in different regions, depending on the choice of the model's parameters. This not only generalizes previous work but also explores new phenomena resulting from the interaction between the two delay variables.
UR - http://www.scopus.com/inward/record.url?scp=85057147753&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85057147753&partnerID=8YFLogxK
U2 - 10.1103/PhysRevE.98.052606
DO - 10.1103/PhysRevE.98.052606
M3 - Article
AN - SCOPUS:85057147753
SN - 2470-0045
VL - 98
JO - Physical Review E
JF - Physical Review E
IS - 5
M1 - 052606
ER -