Tunable filtering and demultiplexing in phononic crystals with hollow cylinders

Y. Pennec, B. Djafari-Rouhani, J. O. Vasseur, A. Khelif, P. A. Deymier

Research output: Contribution to journalArticlepeer-review

23 Scopus citations


Acoustic band gap (ABG) materials constituted of steel hollow cylinders immersed in water can exhibit a tunable narrow pass band (NPB) located inside their gap. We theoretically investigate, using the finite difference time domain (FDTD) method, the properties of waveguides composed of a row of hollow cylinders in a two-dimensional (2D) phononic crystal made of filled steel cylinders. These waveguides exhibit NPB’s at frequencies slightly higher than their infinite periodic ABG counterpart. The frequency of the waveguide’s NPB can be selected by adjusting the inner radius of the hollow cylinders or by changing the nature of the fluid that fills them. We show that a waveguide constituted of a row of hollow cylinders with different inner radii can transport waves at two different frequencies. By selectively filling the cylinders with water or mercury we have created an active device that permits the transmission of waves at one, both, or neither of these frequencies. Finally, we examine the multiplexing and demultiplexing capabilities of Y shaped waveguides constituted of hollow cylinders.

Original languageEnglish (US)
Pages (from-to)6
Number of pages1
JournalPhysical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics
Issue number4
StatePublished - 2004

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Statistics and Probability
  • Condensed Matter Physics


Dive into the research topics of 'Tunable filtering and demultiplexing in phononic crystals with hollow cylinders'. Together they form a unique fingerprint.

Cite this