TY - JOUR
T1 - Tumor-derived, chaperone-rich cell lysate activates dendritic cells and elicits potent antitumor immunity
AU - Zeng, Yi
AU - Feng, Hanping
AU - Graner, Michael W.
AU - Katsanis, Emmanuel
PY - 2003/6/1
Y1 - 2003/6/1
N2 - We have utilized a free-solution isoelectric focusing technique (FS-IEF) to obtain chaperone-rich cell lysate (CRCL) fractions from clarified tumor homogenates and have previously reported on their vaccinating potential. To better understand the underlying mechanisms as well as to improve on the immunizing efficacy of tumor-derived chaperone complexes, in the present study we examined the effects of CRCL-loaded dendritic cells (DCs) against 12B1, an aggressive bcr-abl+ murine leukemia tumor. We found that DCs incubated with 12B1-derived CRCL had higher expression of CD40 and major histocompatibility complex class II (MHC-II) on their cell surface, produced more interleukin-12 (IL-12), and had superior immunostimulatory capacity in a mixed leukocyte reaction (MLR) when compared with DCs exposed to unfractionated tumor lysate or purified heat-shock protein 70 (HSP70). Vaccination of mice with 12B1 CRCL-pulsed DCs significantly prolonged their survival, with more than 80% of mice rejecting their tumors following a lethal challenge with live 12B1 compared with those immunized with tumor lysate or HSP70-loaded DCs. The protective immunity generated was tumor specific, long lasting, and both CD4+ and CD8+ T-cell dependent. Moreover, immunization with CRCL-loaded DCs resulted in a 75% cure rate in mice with pre-existing 12B1 tumors. Our findings indicate that CRCL has prominent adjuvant effects and is a very effective source of tumor antigen for pulsing DCs. FS-IEF-derived CRCL-pulsed DCs are a promising anticancer vaccine that warrants clinical research and development.
AB - We have utilized a free-solution isoelectric focusing technique (FS-IEF) to obtain chaperone-rich cell lysate (CRCL) fractions from clarified tumor homogenates and have previously reported on their vaccinating potential. To better understand the underlying mechanisms as well as to improve on the immunizing efficacy of tumor-derived chaperone complexes, in the present study we examined the effects of CRCL-loaded dendritic cells (DCs) against 12B1, an aggressive bcr-abl+ murine leukemia tumor. We found that DCs incubated with 12B1-derived CRCL had higher expression of CD40 and major histocompatibility complex class II (MHC-II) on their cell surface, produced more interleukin-12 (IL-12), and had superior immunostimulatory capacity in a mixed leukocyte reaction (MLR) when compared with DCs exposed to unfractionated tumor lysate or purified heat-shock protein 70 (HSP70). Vaccination of mice with 12B1 CRCL-pulsed DCs significantly prolonged their survival, with more than 80% of mice rejecting their tumors following a lethal challenge with live 12B1 compared with those immunized with tumor lysate or HSP70-loaded DCs. The protective immunity generated was tumor specific, long lasting, and both CD4+ and CD8+ T-cell dependent. Moreover, immunization with CRCL-loaded DCs resulted in a 75% cure rate in mice with pre-existing 12B1 tumors. Our findings indicate that CRCL has prominent adjuvant effects and is a very effective source of tumor antigen for pulsing DCs. FS-IEF-derived CRCL-pulsed DCs are a promising anticancer vaccine that warrants clinical research and development.
UR - http://www.scopus.com/inward/record.url?scp=0038466354&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0038466354&partnerID=8YFLogxK
U2 - 10.1182/blood-2002-10-3108
DO - 10.1182/blood-2002-10-3108
M3 - Article
C2 - 12576309
AN - SCOPUS:0038466354
SN - 0006-4971
VL - 101
SP - 4485
EP - 4491
JO - Blood
JF - Blood
IS - 11
ER -