TY - JOUR
T1 - Transcriptome analysis reveals nuclear-encoded proteins for the maintenance of temporary plastids in the dinoflagellate Dinophysis acuminata
AU - Wisecaver, Jennifer H.
AU - Hackett, Jeremiah D.
N1 - Funding Information:
JHW was supported by the NSF IGERT Program in Comparative Genomics at the University of Arizona (DGE-0654435). This work was supported by grants from the National Science Foundation (OCE-0723498 and EF-0732440) and funding provided by the BIO5 Institute at the University of Arizona to JDH. The authors are grateful to David Kulis and Donald M. Anderson for aid with Dino-physis culture maintenance and to Christopher Schvarcz for microphotography aid.
PY - 2010/6/10
Y1 - 2010/6/10
N2 - Background: Dinophysis is exceptional among dinoflagellates, possessing plastids derived from cryptophyte algae. Although Dinophysis can be maintained in pure culture for several months, the genus is mixotrophic and needs to feed either to acquire plastids (a process known as kleptoplastidy) or obtain growth factors necessary for plastid maintenance. Dinophysis does not feed directly on cryptophyte algae, but rather on a ciliate (Myrionecta rubra) that has consumed the cryptophytes and retained their plastids. Despite the apparent absence of cryptophyte nuclear genes required for plastid function, Dinophysis can retain cryptophyte plastids for months without feeding.Results: To determine if this dinoflagellate has nuclear-encoded genes for plastid function, we sequenced cDNA from Dinophysis acuminata, its ciliate prey M. rubra, and the cryptophyte source of the plastid Geminigera cryophila. We identified five proteins complete with plastid-targeting peptides encoded in the nuclear genome of D. acuminata that function in photosystem stabilization and metabolite transport. Phylogenetic analyses show that the genes are derived from multiple algal sources indicating some were acquired through horizontal gene transfer.Conclusions: These findings suggest that D. acuminata has some functional control of its plastid, and may be able to extend the useful life of the plastid by replacing damaged transporters and protecting components of the photosystem from stress. However, the dearth of plastid-related genes compared to other fully phototrophic algae suggests that D. acuminata does not have the nuclear repertoire necessary to maintain the plastid permanently.
AB - Background: Dinophysis is exceptional among dinoflagellates, possessing plastids derived from cryptophyte algae. Although Dinophysis can be maintained in pure culture for several months, the genus is mixotrophic and needs to feed either to acquire plastids (a process known as kleptoplastidy) or obtain growth factors necessary for plastid maintenance. Dinophysis does not feed directly on cryptophyte algae, but rather on a ciliate (Myrionecta rubra) that has consumed the cryptophytes and retained their plastids. Despite the apparent absence of cryptophyte nuclear genes required for plastid function, Dinophysis can retain cryptophyte plastids for months without feeding.Results: To determine if this dinoflagellate has nuclear-encoded genes for plastid function, we sequenced cDNA from Dinophysis acuminata, its ciliate prey M. rubra, and the cryptophyte source of the plastid Geminigera cryophila. We identified five proteins complete with plastid-targeting peptides encoded in the nuclear genome of D. acuminata that function in photosystem stabilization and metabolite transport. Phylogenetic analyses show that the genes are derived from multiple algal sources indicating some were acquired through horizontal gene transfer.Conclusions: These findings suggest that D. acuminata has some functional control of its plastid, and may be able to extend the useful life of the plastid by replacing damaged transporters and protecting components of the photosystem from stress. However, the dearth of plastid-related genes compared to other fully phototrophic algae suggests that D. acuminata does not have the nuclear repertoire necessary to maintain the plastid permanently.
UR - http://www.scopus.com/inward/record.url?scp=77953236552&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77953236552&partnerID=8YFLogxK
U2 - 10.1186/1471-2164-11-366
DO - 10.1186/1471-2164-11-366
M3 - Article
C2 - 20537123
AN - SCOPUS:77953236552
SN - 1471-2164
VL - 11
JO - BMC genomics
JF - BMC genomics
IS - 1
M1 - 366
ER -