Abstract
Background: Apoptosis of vascular endothelial cells plays a central role in angiogenesis and atherosclerosis. This study investigates the molecular mechanisms of endothelial apoptosis induced by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) following inhibition of phosphatidylinositol 3-kinase (PI3K). It examines downstream regulation and activation of the extrinsic and intrinsic pathways. Methods and Results: By flow cytometry, TRAIL receptors 2 and 3 were present to a greater extent than receptors 1 and 4. TRAIL reduced cell numbers in combination with the PI3K inhibitor LY 294002. TRAIL (100 ng/ml) with LY 294002 (20 μmol/l) activated the extrinsic pathway, causing progressive cleavage of caspase-8 and caspase-3. Activation of the intrinsic pathway proceeded by release of mitochondrial factors Smac/DIABLO and cytochrome c, and caspase-9 cleavage. LY 294002 reduced phosphorylated Akt (p-Akt), with early loss of the short form of cellular FLIP (c-FLIPs) and concurrent reduction of Bcl-2. Treatment with small interfering RNA against PI3K also reduced c-FLIPs and Bcl-2, and cotreatment with TRAIL triggered caspase-3 cleavage. Conclusions: This study details the molecular regulation of TRAIL-induced apoptosis in vascular endothelium. Inhibition of PI3K reduces p-Akt, with concurrent reductions in c-FLIPs and Bcl-2, and so renders endothelium sensitive to TRAIL-induced apoptosis through the extrinsic and intrinsic pathways.
Original language | English (US) |
---|---|
Pages (from-to) | 337-347 |
Number of pages | 11 |
Journal | Journal of Vascular Research |
Volume | 42 |
Issue number | 4 |
DOIs | |
State | Published - Jul 2005 |
Externally published | Yes |
Keywords
- Apoptosis
- Endothelium
- Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)
ASJC Scopus subject areas
- Physiology
- Cardiology and Cardiovascular Medicine