TY - GEN
T1 - Tractable structure learning in radial physical flow networks
AU - Deka, Deepjyoti
AU - Backhaus, Scott
AU - Chertkov, Michael
N1 - Publisher Copyright:
© 2016 IEEE.
PY - 2016/12/27
Y1 - 2016/12/27
N2 - Physical Flow Networks are different infrastructure networks that allow the flow of physical commodities through edges between its constituent nodes. These include power grid, natural gas transmission network, water pipelines etc. In such networks, the flow on each edge is characterized by a function of the nodal potentials on either side of the edge. Further the net flow in and out of each node is conserved. Learning the structure and state of physical networks is necessary for optimal control as well as to quantify its privacy needs. We consider radial flow networks and study the problem of learning the operational network from a loopy graph of candidate edges using statistics of nodal potentials. Based on the monotonic properties of the flow functions, the key result in this paper shows that if variance of the difference of nodal potentials is used to weight candidate edges, the operational edges form the minimum spanning tree in the loopy graph. Under realistic conditions on the statistics of nodal injection (consumption or production), we provide a greedy structure learning algorithm with quasilinear computational complexity in the number of candidate edges in the network. Our learning framework is very general due to two significant attributes. First it is independent of the specific marginal distributions of nodal potentials and only uses order properties in their second moments. Second, the learning algorithm is agnostic to exact flow functions that relate edge flows to corresponding potential differences and is applicable for a broad class of networks with monotonic flow functions. We demonstrate the efficacy of our work through realistic simulations on diverse physical flow networks and discuss possible extensions of our work to other regimes.
AB - Physical Flow Networks are different infrastructure networks that allow the flow of physical commodities through edges between its constituent nodes. These include power grid, natural gas transmission network, water pipelines etc. In such networks, the flow on each edge is characterized by a function of the nodal potentials on either side of the edge. Further the net flow in and out of each node is conserved. Learning the structure and state of physical networks is necessary for optimal control as well as to quantify its privacy needs. We consider radial flow networks and study the problem of learning the operational network from a loopy graph of candidate edges using statistics of nodal potentials. Based on the monotonic properties of the flow functions, the key result in this paper shows that if variance of the difference of nodal potentials is used to weight candidate edges, the operational edges form the minimum spanning tree in the loopy graph. Under realistic conditions on the statistics of nodal injection (consumption or production), we provide a greedy structure learning algorithm with quasilinear computational complexity in the number of candidate edges in the network. Our learning framework is very general due to two significant attributes. First it is independent of the specific marginal distributions of nodal potentials and only uses order properties in their second moments. Second, the learning algorithm is agnostic to exact flow functions that relate edge flows to corresponding potential differences and is applicable for a broad class of networks with monotonic flow functions. We demonstrate the efficacy of our work through realistic simulations on diverse physical flow networks and discuss possible extensions of our work to other regimes.
KW - Computational Complexity
KW - Graphical Models
KW - Missing data
KW - Physical flow networks
KW - Spanning Tree
KW - monotonic flow
KW - positive quadrant dependence
UR - http://www.scopus.com/inward/record.url?scp=85010716379&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85010716379&partnerID=8YFLogxK
U2 - 10.1109/CDC.2016.7799290
DO - 10.1109/CDC.2016.7799290
M3 - Conference contribution
AN - SCOPUS:85010716379
T3 - 2016 IEEE 55th Conference on Decision and Control, CDC 2016
SP - 6631
EP - 6638
BT - 2016 IEEE 55th Conference on Decision and Control, CDC 2016
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 55th IEEE Conference on Decision and Control, CDC 2016
Y2 - 12 December 2016 through 14 December 2016
ER -