TY - JOUR
T1 - Toward using a smartwatch to monitor frailty in a hospital setting
T2 - Using a single wrist-wearable sensor to assess frailty in Bedbound inpatients
AU - Lee, Hyoki
AU - Joseph, Bellal
AU - Enriquez, Ana
AU - Najafi, Bijan
N1 - Publisher Copyright:
© 2017 S. Karger AG, Basel. All rights reserved.
PY - 2018/6/1
Y1 - 2018/6/1
N2 - Background: While various objective tools have been validated for assessing physical frailty in the geriatric population, these are often unsuitable for busy clinics and mobility-impaired patients. Recently, we have developed a frailty meter (FM) using two wearable sensors, which allows capturing key frailty phenotypes (weakness, slowness, and exhaustion), by testing 20-s rapid elbow flexion-extension test. Objective: In this study, we proposed an enhanced automated algorithm to identify frailty using a single wrist-worn sensor. Methods: The data collected from 100 geriatric inpatients (age: 78.9 ± 9.1 years, 49% frail) were reanalyzed to validate the new algorithm. The frailty status of the participants was determined using a validated modified frailty index. Different FM phenotypes (31 features) including velocity of elbow rotation, decline in velocity of elbow rotation over 20 s, range of motion, etc. were extracted. A regression model, bootstrap with 2,000 iterations, and recursive feature elimination technique were used for optimizing the FM parameters and identifying frailty using a single wrist-worn sensor. Results: A strong agreement was observed between two-sensor and wrist-worn sensor configuration (r = 0.87, p < 0.001). Results suggest that the wrist-worn FM with no demographic information still yields a high accuracy of 80.0% (95% CI: 79.7-80.3%) and an area under the curve of 87.7% (95% CI: 87.4-87.9%) to identify frailty status. Results are comparable with two-sensor configuration, where the observed accuracy and area under the curve were 80.6% (95% CI: 80.4-80.9%) and 87.4% (95% CI: 87.1-87.6%), respectively. Conclusion: The simplicity of FM may open new avenues to integrate wearable technology and mobile health to capture frailty status in a busy hospital setting. Furthermore, the reduction of needed sensors to a single wrist-worn sensor allows deployment of the proposed algorithm in the form of a smartwatch application. From the application standpoint, the proposed FM is superior to traditional physical frailty-screening tools in which the walking test is a key frailty phenotype, and thus they cannot be used for bedbound patients or in busy clinics where administration of gait test as a part of routine assessment is impractical.
AB - Background: While various objective tools have been validated for assessing physical frailty in the geriatric population, these are often unsuitable for busy clinics and mobility-impaired patients. Recently, we have developed a frailty meter (FM) using two wearable sensors, which allows capturing key frailty phenotypes (weakness, slowness, and exhaustion), by testing 20-s rapid elbow flexion-extension test. Objective: In this study, we proposed an enhanced automated algorithm to identify frailty using a single wrist-worn sensor. Methods: The data collected from 100 geriatric inpatients (age: 78.9 ± 9.1 years, 49% frail) were reanalyzed to validate the new algorithm. The frailty status of the participants was determined using a validated modified frailty index. Different FM phenotypes (31 features) including velocity of elbow rotation, decline in velocity of elbow rotation over 20 s, range of motion, etc. were extracted. A regression model, bootstrap with 2,000 iterations, and recursive feature elimination technique were used for optimizing the FM parameters and identifying frailty using a single wrist-worn sensor. Results: A strong agreement was observed between two-sensor and wrist-worn sensor configuration (r = 0.87, p < 0.001). Results suggest that the wrist-worn FM with no demographic information still yields a high accuracy of 80.0% (95% CI: 79.7-80.3%) and an area under the curve of 87.7% (95% CI: 87.4-87.9%) to identify frailty status. Results are comparable with two-sensor configuration, where the observed accuracy and area under the curve were 80.6% (95% CI: 80.4-80.9%) and 87.4% (95% CI: 87.1-87.6%), respectively. Conclusion: The simplicity of FM may open new avenues to integrate wearable technology and mobile health to capture frailty status in a busy hospital setting. Furthermore, the reduction of needed sensors to a single wrist-worn sensor allows deployment of the proposed algorithm in the form of a smartwatch application. From the application standpoint, the proposed FM is superior to traditional physical frailty-screening tools in which the walking test is a key frailty phenotype, and thus they cannot be used for bedbound patients or in busy clinics where administration of gait test as a part of routine assessment is impractical.
KW - Frailty meter
KW - Frailty phenotype
KW - Geriatric population
KW - Mobile health
KW - Wearable technology
UR - http://www.scopus.com/inward/record.url?scp=85035780290&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85035780290&partnerID=8YFLogxK
U2 - 10.1159/000484241
DO - 10.1159/000484241
M3 - Article
C2 - 29176316
AN - SCOPUS:85035780290
SN - 0304-324X
VL - 64
SP - 389
EP - 400
JO - Gerontology
JF - Gerontology
IS - 4
ER -