TY - JOUR
T1 - Toward Model Reduction for Power System Transients With Physics-Informed PDE
AU - Pagnier, Laurent
AU - Fritzsch, Julian
AU - Jacquod, Philippe
AU - Chertkov, Michael
N1 - Funding Information:
This work was supported in part by the Swiss National Science Foundation under Grant 200020-182050.
Publisher Copyright:
© 2013 IEEE.
PY - 2022
Y1 - 2022
N2 - This manuscript reports the first step towards building a robust and efficient model reduction methodology to capture transient dynamics in a transmission level electric power system. Such dynamics is normally modeled on seconds-to-tens-of-seconds time scales by the so-called swing equations, which are ordinary differential equations defined on a spatially discrete model of the power grid. Following Seymlyen (1974) and Thorpe, Seyler, and Phadke (1999), we suggest to map the swing equations onto a linear, inhomogeneous Partial Differential Equation (PDE) of parabolic type in two space and one time dimensions with time-independent coefficients and properly defined boundary conditions. We illustrate our method on the synchronous transmission grid of continental Europe. We show that, when properly coarse-grained, i.e., with the PDE coefficients and source terms extracted from a spatial convolution procedure of the respective discrete coefficients in the swing equations, the resulting PDE reproduces faithfully and efficiently the original swing dynamics. We finally discuss future extensions of this work, where the presented PDE-based modeling will initialize a physics-informed machine learning approach for real-time modeling, n-1 feasibility assessment and transient stability analysis of power systems.
AB - This manuscript reports the first step towards building a robust and efficient model reduction methodology to capture transient dynamics in a transmission level electric power system. Such dynamics is normally modeled on seconds-to-tens-of-seconds time scales by the so-called swing equations, which are ordinary differential equations defined on a spatially discrete model of the power grid. Following Seymlyen (1974) and Thorpe, Seyler, and Phadke (1999), we suggest to map the swing equations onto a linear, inhomogeneous Partial Differential Equation (PDE) of parabolic type in two space and one time dimensions with time-independent coefficients and properly defined boundary conditions. We illustrate our method on the synchronous transmission grid of continental Europe. We show that, when properly coarse-grained, i.e., with the PDE coefficients and source terms extracted from a spatial convolution procedure of the respective discrete coefficients in the swing equations, the resulting PDE reproduces faithfully and efficiently the original swing dynamics. We finally discuss future extensions of this work, where the presented PDE-based modeling will initialize a physics-informed machine learning approach for real-time modeling, n-1 feasibility assessment and transient stability analysis of power systems.
KW - Power system dynamics
KW - disturbance propagation
KW - electromechanical waves
KW - inter-area oscillations
KW - physics-informed machine learning
UR - http://www.scopus.com/inward/record.url?scp=85132705308&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85132705308&partnerID=8YFLogxK
U2 - 10.1109/ACCESS.2022.3183336
DO - 10.1109/ACCESS.2022.3183336
M3 - Article
AN - SCOPUS:85132705308
VL - 10
SP - 65118
EP - 65125
JO - IEEE Access
JF - IEEE Access
SN - 2169-3536
ER -