TY - JOUR
T1 - Titin and diaphragm dysfunction in mechanically ventilated rats
AU - Hees, Hieronymus W.H.Van
AU - Schellekens, Willem Jan M.
AU - Acuña, Gilberto L.Andrade
AU - Linkels, Marianne
AU - Hafmans, Theo
AU - Ottenheijm, Coen A.C.
AU - Granzier, Henk L.
AU - Scheffer, Gert Jan
AU - Hoeven, Johannes G.Van Der
AU - Dekhuijzen, P. N.Richard
AU - Heunks, Leo M.A.
PY - 2012/4
Y1 - 2012/4
N2 - Purpose: Diaphragm weakness induced by mechanical ventilation may contribute to difficult weaning from the ventilator. For optimal force generation the muscle proteins myosin and titin are indispensable. The present study investigated if myosin and titin loss or dysfunction are involved in mechanical ventilation-induced diaphragm weakness. Methods: Male Wistar rats were either assigned to a control group (n = 10) or submitted to 18 h of mechanical ventilation (MV, n = 10). At the end of the experiment, diaphragm and soleus muscle were excised for functional and biochemical analysis. Results: Maximal specific active force generation of muscle fibers isolated from the diaphragm of MV rats was lower than controls (128 ± 9 vs. 165 ± 13 mN/mm2, p = 0.02) and was accompanied by a proportional reduction of myosin heavy chain concentration in these fibers. Passive force generation upon stretch was significantly reduced in diaphragm fibers from MV rats by ca. 35%. Yet, titin content was not significantly different between control and MV diaphragm. In vitro preincubation with phosphatase-1 decreased passive force generation upon stretch in diaphragm fibers from control, but not from MV rats. Mechanical ventilation did not affect active or passive force generation in the soleus muscle. Conclusions: Mechanical ventilation leads to impaired diaphragm fiber active force-generating capacity and passive force generation upon stretch. Loss of myosin contributes to reduced active force generation, whereas reduced passive force generation is likely to result from a decreased phosphorylation status of titin. These impairments were not discernable in the soleus muscle of 18 h mechanically ventilated rats.
AB - Purpose: Diaphragm weakness induced by mechanical ventilation may contribute to difficult weaning from the ventilator. For optimal force generation the muscle proteins myosin and titin are indispensable. The present study investigated if myosin and titin loss or dysfunction are involved in mechanical ventilation-induced diaphragm weakness. Methods: Male Wistar rats were either assigned to a control group (n = 10) or submitted to 18 h of mechanical ventilation (MV, n = 10). At the end of the experiment, diaphragm and soleus muscle were excised for functional and biochemical analysis. Results: Maximal specific active force generation of muscle fibers isolated from the diaphragm of MV rats was lower than controls (128 ± 9 vs. 165 ± 13 mN/mm2, p = 0.02) and was accompanied by a proportional reduction of myosin heavy chain concentration in these fibers. Passive force generation upon stretch was significantly reduced in diaphragm fibers from MV rats by ca. 35%. Yet, titin content was not significantly different between control and MV diaphragm. In vitro preincubation with phosphatase-1 decreased passive force generation upon stretch in diaphragm fibers from control, but not from MV rats. Mechanical ventilation did not affect active or passive force generation in the soleus muscle. Conclusions: Mechanical ventilation leads to impaired diaphragm fiber active force-generating capacity and passive force generation upon stretch. Loss of myosin contributes to reduced active force generation, whereas reduced passive force generation is likely to result from a decreased phosphorylation status of titin. These impairments were not discernable in the soleus muscle of 18 h mechanically ventilated rats.
KW - Diaphragm
KW - Force
KW - Mechanical ventilation
KW - Myosin Titin
KW - Single fiber
UR - http://www.scopus.com/inward/record.url?scp=84862533035&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84862533035&partnerID=8YFLogxK
U2 - 10.1007/s00134-012-2504-5
DO - 10.1007/s00134-012-2504-5
M3 - Article
C2 - 22327561
AN - SCOPUS:84862533035
SN - 0342-4642
VL - 38
SP - 702
EP - 709
JO - Intensive Care Medicine
JF - Intensive Care Medicine
IS - 4
ER -