Time-domain master equation for pulse evolution and laser mode-locking

A. M. Dunlop, W. J. Firth, E. M. Wright

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

Using the well-known analogy between the space and time domains we derive a temporal master equation (ME) operator which can be applied to any cavity containing dispersive and filtering elements, phase or amplitude modulators, and one nonlinear element. The cavity properties are described in terms of 2 × 2 'KIJL' matrices. We show that this ME correctly reproduces the cavity mode structure in the linear limit. Numerical simulation of an actively mode-locked Fabry-Perot laser with the nonlinear medium at an end mirror gives results in excellent agreement with those found using the more conventional Huygens' integral method. Using a simple perturbation approach based on the nonlinear Schrodinger equation (NLS) we also show that the field in this laser is soliton-like, and give analytic expressions for the soliton parameters.

Original languageEnglish (US)
Pages (from-to)1131-1146
Number of pages16
JournalOptical and Quantum Electronics
Volume32
Issue number10
DOIs
StatePublished - Oct 2000

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Time-domain master equation for pulse evolution and laser mode-locking'. Together they form a unique fingerprint.

Cite this