TY - JOUR
T1 - Three-dimensional light-matter interface for collective spin squeezing in atomic ensembles
AU - Baragiola, Ben Q.
AU - Norris, Leigh M.
AU - Montaño, Enrique
AU - Mickelson, Pascal G.
AU - Jessen, Poul S.
AU - Deutsch, Ivan H.
PY - 2014/3/26
Y1 - 2014/3/26
N2 - We study the three-dimensional nature of the quantum interface between an ensemble of cold, trapped atomic spins and a paraxial laser beam, coupled through a dispersive interaction. To achieve strong entanglement between the collective atomic spin and the photons, one must match the spatial mode of the collective radiation of the ensemble with the mode of the laser beam while minimizing the effects of decoherence due to optical pumping. For ensembles coupling to a probe field that varies over the extent of the cloud, the set of atoms that indistinguishably radiates into a desired mode of the field defines an inhomogeneous spin wave. Strong coupling of a spin wave to the probe mode is not characterized by a single parameter, the optical density, but by a collection of different effective atom numbers that characterize the coherence and decoherence of the system. To model the dynamics of the system, we develop a full stochastic master equation, including coherent collective scattering into paraxial modes, decoherence by local inhomogeneous diffuse scattering, and backaction due to continuous measurement of the light entangled with the spin waves. This formalism is used to study the squeezing of a spin wave via continuous quantum nondemolition measurement. We find that the greatest squeezing occurs in parameter regimes where spatial inhomogeneities are significant, far from the limit in which the interface is well approximated by a one-dimensional, homogeneous model.
AB - We study the three-dimensional nature of the quantum interface between an ensemble of cold, trapped atomic spins and a paraxial laser beam, coupled through a dispersive interaction. To achieve strong entanglement between the collective atomic spin and the photons, one must match the spatial mode of the collective radiation of the ensemble with the mode of the laser beam while minimizing the effects of decoherence due to optical pumping. For ensembles coupling to a probe field that varies over the extent of the cloud, the set of atoms that indistinguishably radiates into a desired mode of the field defines an inhomogeneous spin wave. Strong coupling of a spin wave to the probe mode is not characterized by a single parameter, the optical density, but by a collection of different effective atom numbers that characterize the coherence and decoherence of the system. To model the dynamics of the system, we develop a full stochastic master equation, including coherent collective scattering into paraxial modes, decoherence by local inhomogeneous diffuse scattering, and backaction due to continuous measurement of the light entangled with the spin waves. This formalism is used to study the squeezing of a spin wave via continuous quantum nondemolition measurement. We find that the greatest squeezing occurs in parameter regimes where spatial inhomogeneities are significant, far from the limit in which the interface is well approximated by a one-dimensional, homogeneous model.
UR - http://www.scopus.com/inward/record.url?scp=84898060379&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84898060379&partnerID=8YFLogxK
U2 - 10.1103/PhysRevA.89.033850
DO - 10.1103/PhysRevA.89.033850
M3 - Article
AN - SCOPUS:84898060379
SN - 1050-2947
VL - 89
JO - Physical Review A - Atomic, Molecular, and Optical Physics
JF - Physical Review A - Atomic, Molecular, and Optical Physics
IS - 3
M1 - 033850
ER -