TY - JOUR
T1 - Three-dimensional instability of elliptical flow
AU - Bayly, B. J.
PY - 1986
Y1 - 1986
N2 - A theory is presented for Pierrehumbert's three-dimensional short-wave inviscid instability of the simple two-dimensional elliptical flow with velocity field u(x,y,z)=(-Ey,E-1x,0). The fundamental modes, which are also exact solutions of the nonlinear equations, are plane waves whose wave vector rotates elliptically around the z axis with period 2. The growth rates are the exponents of a matrix Floquet problem, and agree with those calculated by Pierrehumbert.
AB - A theory is presented for Pierrehumbert's three-dimensional short-wave inviscid instability of the simple two-dimensional elliptical flow with velocity field u(x,y,z)=(-Ey,E-1x,0). The fundamental modes, which are also exact solutions of the nonlinear equations, are plane waves whose wave vector rotates elliptically around the z axis with period 2. The growth rates are the exponents of a matrix Floquet problem, and agree with those calculated by Pierrehumbert.
UR - http://www.scopus.com/inward/record.url?scp=0001573414&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0001573414&partnerID=8YFLogxK
U2 - 10.1103/PhysRevLett.57.2160
DO - 10.1103/PhysRevLett.57.2160
M3 - Article
AN - SCOPUS:0001573414
SN - 0031-9007
VL - 57
SP - 2160
EP - 2163
JO - Physical review letters
JF - Physical review letters
IS - 17
ER -