Thinning, photonic beamsplitting, and a general discrete Entropy power Inequality

Saikat Guha, Jeffrey H. Shapiro, Raul Garcia Patron Sanchez

Research output: Chapter in Book/Report/Conference proceedingConference contribution

6 Scopus citations

Abstract

Many partially-successful attempts have been made to find the most natural discrete-variable version of Shannon's entropy power inequality (EPI). We develop an axiomatic framework from which we deduce the natural form of a discrete-variable EPI and an associated entropic monotonicity in a discrete-variable central limit theorem. In this discrete EPI, the geometric distribution, which has the maximum entropy among all discrete distributions with a given mean, assumes a role analogous to the Gaussian distribution in Shannon's EPI. The entropy power of X is defined as the mean of a geometric random variable with entropy H(X). The crux of our construction is a discrete-variable version of Lieb's scaled addition X plusbη Y of two random variables X and Y with η ⋯ (0, 1). We discuss the relationship of our discrete EPI with recent work of Yu and Johnson who developed an EPI for a restricted class of random variables that have ultra-log-concave (ULC) distributions. Even though we leave open the proof of the aforesaid natural form of the discrete EPI, we show that this discrete EPI holds true for variables with arbitrary discrete distributions when the entropy power is redefined as eH(X) in analogy with the continuous version. Finally, we show that our conjectured discrete EPI is a special case of the yet-unproven Entropy Photon-number Inequality (EPnI), which assumes a role analogous to Shannon's EPI in capacity proofs for Gaussian bosonic (quantum) channels.

Original languageEnglish (US)
Title of host publicationProceedings - ISIT 2016; 2016 IEEE International Symposium on Information Theory
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages705-709
Number of pages5
ISBN (Electronic)9781509018062
DOIs
StatePublished - Aug 10 2016
Externally publishedYes
Event2016 IEEE International Symposium on Information Theory, ISIT 2016 - Barcelona, Spain
Duration: Jul 10 2016Jul 15 2016

Publication series

NameIEEE International Symposium on Information Theory - Proceedings
Volume2016-August
ISSN (Print)2157-8095

Other

Other2016 IEEE International Symposium on Information Theory, ISIT 2016
Country/TerritorySpain
CityBarcelona
Period7/10/167/15/16

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Information Systems
  • Modeling and Simulation
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Thinning, photonic beamsplitting, and a general discrete Entropy power Inequality'. Together they form a unique fingerprint.

Cite this