Thermotolerance of leaf discs from four isoprene-emitting species is not enhanced by exposure to exogenous isoprene

Barry A. Logan, Russell K. Monson

Research output: Contribution to journalArticlepeer-review

25 Scopus citations

Abstract

The effects of exogenously supplied isoprene on chlorophyll fluorescence characteristics were examined in leaf discs of four isoprene-emitting plant species, kudzu (Pueraria lobata [Willd.] Ohwi.), velvet bean (Mucuna sp.), quaking aspen (Populus tremuloides Michx.), and pussy willow (Salix discolor Muhl). Isoprene, supplied to the leaves at either 18 μL L-1 in compressed air or 21 μL L-1 in N2, had no effect on the temperature at which minimal fluorescence exhibited an upward inflection during controlled increases in leaf-disc temperature. During exposure to 1008 μmol photons m-2 s-1 in an N2 atmosphere, 21 μL L-1 isoprene had no effect on the thermally induced inflection of steady-state fluorescence. The maximum quantum efficiency of photosystem II photochemistry decreased sharply as leaf-disc temperature was increased; however, this decrease was unaffected by exposure of leaf discs to 21 μL L-1 isoprene. Therefore, there were no discernible effects of isoprene on the occurrence of symptoms of high-temperature damage to thylakoid membranes. Our data do not support the hypothesis that isoprene enhances leaf thermotolerance.

Original languageEnglish (US)
Pages (from-to)821-825
Number of pages5
JournalPlant physiology
Volume120
Issue number3
DOIs
StatePublished - Jul 1999

ASJC Scopus subject areas

  • Physiology
  • Genetics
  • Plant Science

Fingerprint

Dive into the research topics of 'Thermotolerance of leaf discs from four isoprene-emitting species is not enhanced by exposure to exogenous isoprene'. Together they form a unique fingerprint.

Cite this