TY - JOUR
T1 - Thermochronology of sandstone-hosted secondary Fe- and Mn-oxides near Moab, Utah
T2 - Record of paleo-fluid flow along a fault
AU - Garcia, Victor H.
AU - Reiners, Peter W.
AU - Shuster, David L.
AU - Idleman, Bruce
AU - Zeitler, Peter K.
N1 - Publisher Copyright:
© 2017 Geological Society of America.
PY - 2018/1/1
Y1 - 2018/1/1
N2 - Secondary Fe- and Mn-oxides are locally common near faults and fractures within sandstones of the Colorado Plateau in the form of cements, concretions, and fracturefill material. However, little is known about how and why these oxides formed, and less is understood about when they formed. In this study, we integrated field observations, detailed scanning electron microscope and petrographic observations, and (U-Th)/He and 40Ar/39Ar dating to better understand the formation of Fe- and Mn-oxides from three fault zones in Flat Iron Mesa, Utah. Most Feand Mn-oxide (U-Th)/He ages range from 0.50 to 3.4 Ma, which are much younger than 40Ar/39Ar ages of 25-20 Ma from a previous study. Current40Ar/39Ar ages on a Mn-oxide sample from this study yielded a plateau age of 3.6 ± 0.08 Ma. 4He/3He diffusion data from Fe- and Mn-oxides are consistent with the presence of multiple diffusion domains with varying He retentivity. Predicted fractional radiogenic He retention over 3.6 m.y. at nearsurface temperatures for the bulk samples, with domain proportions of the diffusion experiments, is ~90% for Fe-oxide and ~45% for Mn-oxide. The multidomain behavior exhibited by the oxides and the variability observed in (U-Th)/He ages among aliquots are consistent with variable amounts of diffusive loss of He within dated aliquots. Using 4He/3He data and He bulk ages, step-age plots indicate a high fractional release plateau at ca. 3.6 Ma, concordant with 40Ar/39Ar dating and most of the oldest (U-Th)/He ages observed. Taken together, these results are most consistent with formation of Flat Iron Mesa Fe- and Mn-oxides near the surface (< 0.5 km) at 3.6 Ma, due to hydrologic changes, fault activity, or both. Our data and interpretations suggest that erosional exhumation rates over ~1-4 m.y. time scales may be variable in the central Colorado Plateau, possibly driven by local effects, and they are not spatially uniform over large regions.
AB - Secondary Fe- and Mn-oxides are locally common near faults and fractures within sandstones of the Colorado Plateau in the form of cements, concretions, and fracturefill material. However, little is known about how and why these oxides formed, and less is understood about when they formed. In this study, we integrated field observations, detailed scanning electron microscope and petrographic observations, and (U-Th)/He and 40Ar/39Ar dating to better understand the formation of Fe- and Mn-oxides from three fault zones in Flat Iron Mesa, Utah. Most Feand Mn-oxide (U-Th)/He ages range from 0.50 to 3.4 Ma, which are much younger than 40Ar/39Ar ages of 25-20 Ma from a previous study. Current40Ar/39Ar ages on a Mn-oxide sample from this study yielded a plateau age of 3.6 ± 0.08 Ma. 4He/3He diffusion data from Fe- and Mn-oxides are consistent with the presence of multiple diffusion domains with varying He retentivity. Predicted fractional radiogenic He retention over 3.6 m.y. at nearsurface temperatures for the bulk samples, with domain proportions of the diffusion experiments, is ~90% for Fe-oxide and ~45% for Mn-oxide. The multidomain behavior exhibited by the oxides and the variability observed in (U-Th)/He ages among aliquots are consistent with variable amounts of diffusive loss of He within dated aliquots. Using 4He/3He data and He bulk ages, step-age plots indicate a high fractional release plateau at ca. 3.6 Ma, concordant with 40Ar/39Ar dating and most of the oldest (U-Th)/He ages observed. Taken together, these results are most consistent with formation of Flat Iron Mesa Fe- and Mn-oxides near the surface (< 0.5 km) at 3.6 Ma, due to hydrologic changes, fault activity, or both. Our data and interpretations suggest that erosional exhumation rates over ~1-4 m.y. time scales may be variable in the central Colorado Plateau, possibly driven by local effects, and they are not spatially uniform over large regions.
UR - http://www.scopus.com/inward/record.url?scp=85038839610&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85038839610&partnerID=8YFLogxK
U2 - 10.1130/B31627.1
DO - 10.1130/B31627.1
M3 - Article
AN - SCOPUS:85038839610
SN - 0016-7606
VL - 130
SP - 93
EP - 113
JO - Bulletin of the Geological Society of America
JF - Bulletin of the Geological Society of America
IS - 1-2
ER -