Theory of an optomechanical quantum heat engine

Keye Zhang, Francesco Bariani, Pierre Meystre

Research output: Contribution to journalArticlepeer-review

58 Scopus citations

Abstract

Coherent interconversion between optical and mechanical excitations in an optomechanical cavity can be used to engineer a quantum heat engine. This heat engine is based on an Otto cycle between a cold photonic reservoir and a hot phononic reservoir [K. Zhang, F. Bariani, and P. Meystre, Phys. Rev. Lett. 112, 150602 (2014)PRLTAO0031-900710.1103/PhysRevLett.112.150602]. Building on our previous work, we (i) develop a detailed theoretical analysis of the work and the efficiency of the engine and (ii) perform an investigation of the quantum thermodynamics underlying this scheme. In particular, we analyze the thermodynamic performance in both the dressed polariton picture and the original bare photon and phonon picture. Finally, (iii) a numerical simulation is performed to derive the full evolution of the quantum optomechanical system during the Otto cycle, by taking into account all relevant sources of noise.

Original languageEnglish (US)
Article number023819
JournalPhysical Review A - Atomic, Molecular, and Optical Physics
Volume90
Issue number2
DOIs
StatePublished - Aug 12 2014
Externally publishedYes

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics

Fingerprint

Dive into the research topics of 'Theory of an optomechanical quantum heat engine'. Together they form a unique fingerprint.

Cite this