The X-shooter/ALMA Sample of Quasars in the Epoch of Reionization. II. Black Hole Masses, Eddington Ratios, and the Formation of the First Quasars

Emanuele Paolo Farina, Jan Torge Schindler, Fabian Walter, Eduardo Bañados, Frederick B. Davies, Roberto Decarli, Anna Christina Eilers, Xiaohui Fan, Joseph F. Hennawi, Chiara Mazzucchelli, Romain A. Meyer, Benny Trakhtenbrot, Marta Volonteri, Feige Wang, Gábor Worseck, Jinyi Yang, Thales A. Gutcke, Bram P. Venemans, Sarah E.I. Bosman, Tiago CostaGisella De Rosa, Alyssa B. Drake, Masafusa Onoue

Research output: Contribution to journalArticlepeer-review

30 Scopus citations

Abstract

We present measurements of black hole masses and Eddington ratios (λ Edd) for a sample of 38 bright (M 1450 < −24.4 mag) quasars at 5.8 ≲ z ≲ 7.5, derived from Very Large Telescope/X-shooter near-IR spectroscopy of their broad C iv and Mg ii emission lines. The black hole masses (on average, M BH ∼ 4.6 × 109 M ) and accretion rates (0.1 ≲ λ Edd ≲ 1.0) are broadly consistent with that of similarly luminous 0.3 ≲ z ≲ 2.3 quasars, but there is evidence for a mild increase in the Eddington ratio above z ≳ 6. Combined with deep Atacama Large Millimeter/submillimeter Array (ALMA) observations of the [C II] 158 μm line from the host galaxies and VLT/MUSE investigations of the extended Lyα halos, this study provides fundamental clues to models of the formation and growth of the first massive galaxies and black holes. Compared to local scaling relations, z ≳ 5.7 black holes appear to be over-massive relative to their hosts, with accretion properties that do not change with host galaxy morphologies. Assuming that the kinematics of the T ∼ 104 K gas, traced by the extended Lyα halos, are dominated by the gravitational potential of the dark matter halo, we observe a similar relation between black hole mass and circular velocity as reported for z ∼ 0 galaxies. These results paint a picture where the first supermassive black holes reside in massive halos at z ≳ 6 and lead the first stages of galaxy formation by rapidly growing in mass with a duty cycle of order unity. The duty cycle needs to drastically drop toward lower redshifts, while the host galaxies continue forming stars at a rate of hundreds of solar masses per year, sustained by the large reservoirs of cool gas surrounding them.

Original languageEnglish (US)
Article number106
JournalAstrophysical Journal
Volume941
Issue number2
DOIs
StatePublished - Dec 1 2022

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'The X-shooter/ALMA Sample of Quasars in the Epoch of Reionization. II. Black Hole Masses, Eddington Ratios, and the Formation of the First Quasars'. Together they form a unique fingerprint.

Cite this