Abstract
The nearby SN 2017eaw is a Type II-P ("plateau") supernova (SN) showing early-time, moderate CSM interaction. We present a comprehensive study of this SN, including the analysis of high-quality optical photometry and spectroscopy covering the very early epochs up to the nebular phase, as well as near-ultraviolet and near-infrared spectra and early-time X-ray and radio data. The combined data of SNe 2017eaw and 2004et allow us to get an improved distance to the host galaxy, NGC 6946, of D ∼ 6.85 ± 0.63 Mpc; this fits into recent independent results on the distance of the host and disfavors the previously derived (30% shorter) distances based on SN 2004et. From modeling the nebular spectra and the quasi-bolometric light curve, we estimate the progenitor mass and some basic physical parameters for the explosion and ejecta. Our results agree well with previous reports on a red supergiant progenitor star with a mass of ∼15-16 M o. Our estimation of the pre-explosion mass-loss rate ( yr-1) agrees well with previous results based on the opacity of the dust shell enshrouding the progenitor, but it is orders of magnitude lower than previous estimates based on general light-curve modeling of Type II-P SNe. Combining late-time optical and mid-infrared data, a clear excess at 4.5 μm can be seen, supporting the previous statements on the (moderate) dust formation in the vicinity of SN 2017eaw.
Original language | English (US) |
---|---|
Article number | 19 |
Journal | Astrophysical Journal |
Volume | 876 |
Issue number | 1 |
DOIs | |
State | Published - May 1 2019 |
Keywords
- supernovae: general
- supernovae: individual (SN 2017eaw)
ASJC Scopus subject areas
- Astronomy and Astrophysics
- Space and Planetary Science