TY - JOUR
T1 - The torsion group of a field defined by radicals
AU - de Orozco, Maria Acosta
AU - Velez, William Yslas
N1 - Funding Information:
* This material is based upon work supported in part by National Science Foundation Grant PRM 82-13782.
PY - 1984/10
Y1 - 1984/10
N2 - Let L F be a finite separable extension, L* = L{0}, and T( L* F*) the torsion subgroup of L* F*. When L F is an abelian extension T( L* F*) is explicitly determined. This information is used to study the structure of T( L* F*). In particular, T( F(α)* F*) when am = a ∈ F is explicitly determined.
AB - Let L F be a finite separable extension, L* = L{0}, and T( L* F*) the torsion subgroup of L* F*. When L F is an abelian extension T( L* F*) is explicitly determined. This information is used to study the structure of T( L* F*). In particular, T( F(α)* F*) when am = a ∈ F is explicitly determined.
UR - http://www.scopus.com/inward/record.url?scp=48549110812&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=48549110812&partnerID=8YFLogxK
U2 - 10.1016/0022-314X(84)90112-4
DO - 10.1016/0022-314X(84)90112-4
M3 - Article
AN - SCOPUS:48549110812
SN - 0022-314X
VL - 19
SP - 283
EP - 294
JO - Journal of Number Theory
JF - Journal of Number Theory
IS - 2
ER -