Abstract
We derive the parity- and time-reversal-violating nuclear interactions stemming from the QCD θ̄ term and quark/gluon operators of effective dimension 6: quark electric dipole moments, quark and gluon chromo-electric dipole moments, and two four-quark operators. We work in the framework of two-flavor chiral perturbation theory, where a systematic expansion is possible. The different chiral-transformation properties of the sources of time-reversal violation lead to different hadronic interactions. For all sources considered the leading-order potential involves known one-pion exchange, but its specific form and the relative importance of short-range interactions depend on the source. For the θ̄ term, the leading potential is solely given by one-pion exchange, which does not contribute to the deuteron electric dipole moment. In subleading order, a new two-pion-exchange potential is obtained. Its short-range component is indistinguishable from one of two undetermined contact interactions that appear at the same order and represent effects of heavier mesons and other short-range QCD dynamics. One-pion-exchange corrections at this order are discussed as well.
Original language | English (US) |
---|---|
Pages (from-to) | 117-160 |
Number of pages | 44 |
Journal | Nuclear Physics A |
Volume | 872 |
Issue number | 1 |
DOIs | |
State | Published - Dec 2011 |
Keywords
- Chiral effective theory
- Time-reversal violation
ASJC Scopus subject areas
- Nuclear and High Energy Physics