TY - JOUR
T1 - The spatial exposure of the Chinese infrastructure system to flooding and drought hazards
AU - Hu, Xi
AU - Hall, Jim W.
AU - Shi, Peijun
AU - Lim, Wee Ho
N1 - Funding Information:
This work was supported by the Asian Studies Centre, University of Oxford. JWH and WHL acknowledge the Oxford Martin School for the financial support of this study through the grant OMPORS. We thank Simon Abele at the Environmental Change Institute (ECI), University of Oxford, for his contribution in assembling the OpenStreetMap network data set. We are also grateful to Dr. Raghav Pant for coding the input from the flood results, Scott Thacker at the ECI, and Valerie Bevan for their comments during the development of the paper.
Funding Information:
This work was supported by the Asian Studies Centre, University of Oxford. JWH and WHL acknowledge the Oxford Martin School for the financial support of this study through the grant OMPORS. We thank Simon Abele at the Environmental Change Institute (ECI), University of Oxford, for his contribution in assembling the OpenStreetMap network data set. We are also grateful to Dr. Raghav Pant for coding the input from the flood results, Scott Thacker at the ECI, and Valerie Bevan for their comments during the development of the paper.
Publisher Copyright:
© 2015, Springer Science+Business Media Dordrecht.
PY - 2016/1/1
Y1 - 2016/1/1
N2 - Recent rapid urbanisation means that China has invested in an enormous amount of infrastructure, much of which is vulnerable to natural hazards. This paper investigates from a spatial perspective how the Chinese infrastructure system is exposed to flooding and drought hazards. Infrastructure exposure across three different sectors—energy, transport, and waste—is considered. With a database of 10,561 nodes and 2863 edges that make up the three infrastructure networks, we develop a methodology assigning the number of users to individual infrastructure assets and conduct hotspot analysis by applying the Kernel density estimator. We find that infrastructure assets in Anhui, Beijing, Guangdong, Hebei, Henan, Jiangsu, Liaoning, Shandong, Shanghai, Tianjin, Zhejiang—and their 66 cities—are exceptionally exposed to flooding, which affects sub-sectors including rail, aviation, shipping, electricity, and wastewater. The average number of infrastructure users who could be disrupted by the impacts of flooding on these sectors stands at 103 million. The most exposed sub-sectors are electricity and wastewater (20 and 14 % of the total, respectively). For drought hazard, we restrict our work to the electricity sub-sector, which is potentially exposed to water shortages at hydroelectric power plants and cooling water shortage at thermoelectric power plants, where the number of highly exposed users is 6 million. Spatially, we demonstrate that the southern border of Inner Mongolia, Shandong, Shanxi, Hebei, north Henan, Beijing, Tianjin, south-west of Jiangsu—and their 99 cities—are especially exposed. While further work is required to understand infrastructure’s sensitivity to hazard loading, the results already provide evidence to inform strategic infrastructure planning decisions.
AB - Recent rapid urbanisation means that China has invested in an enormous amount of infrastructure, much of which is vulnerable to natural hazards. This paper investigates from a spatial perspective how the Chinese infrastructure system is exposed to flooding and drought hazards. Infrastructure exposure across three different sectors—energy, transport, and waste—is considered. With a database of 10,561 nodes and 2863 edges that make up the three infrastructure networks, we develop a methodology assigning the number of users to individual infrastructure assets and conduct hotspot analysis by applying the Kernel density estimator. We find that infrastructure assets in Anhui, Beijing, Guangdong, Hebei, Henan, Jiangsu, Liaoning, Shandong, Shanghai, Tianjin, Zhejiang—and their 66 cities—are exceptionally exposed to flooding, which affects sub-sectors including rail, aviation, shipping, electricity, and wastewater. The average number of infrastructure users who could be disrupted by the impacts of flooding on these sectors stands at 103 million. The most exposed sub-sectors are electricity and wastewater (20 and 14 % of the total, respectively). For drought hazard, we restrict our work to the electricity sub-sector, which is potentially exposed to water shortages at hydroelectric power plants and cooling water shortage at thermoelectric power plants, where the number of highly exposed users is 6 million. Spatially, we demonstrate that the southern border of Inner Mongolia, Shandong, Shanxi, Hebei, north Henan, Beijing, Tianjin, south-west of Jiangsu—and their 99 cities—are especially exposed. While further work is required to understand infrastructure’s sensitivity to hazard loading, the results already provide evidence to inform strategic infrastructure planning decisions.
KW - China
KW - Drought
KW - Exposure
KW - Flooding
KW - Infrastructure (energy, electricity, waste, transport, rail, aviation, shipping)
UR - http://www.scopus.com/inward/record.url?scp=84952299041&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84952299041&partnerID=8YFLogxK
U2 - 10.1007/s11069-015-2012-3
DO - 10.1007/s11069-015-2012-3
M3 - Article
AN - SCOPUS:84952299041
SN - 0921-030X
VL - 80
SP - 1083
EP - 1118
JO - Natural Hazards
JF - Natural Hazards
IS - 2
ER -