The space coronagraph optical bench (SCoOB): 3. Mueller matrix polarimetry of a coronagraphic exit pupil

Jaren N. Ashcraft, Ewan S. Douglas, Ramya M. Anche, Kyle Van Gorkom, Emory Jenkins, William Melby, Maxwell A. Millar-Blanchaer

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

High-contrast imaging in the next decade aims to image exoplanets at smaller angular separations and deeper contrasts than ever before. A problem that has recently garnered attention for telescopes equipped with high-contrast coronagraphs is polarization aberration arising from the optics. These aberrations manifest as low-order aberrations of different magnitudes for orthogonal polarization states and spread light into the dark hole of the coronagraph that cannot be fully corrected. The origin of polarization aberrations has been modeled at the telescope level. However, we don’t fully understand how polarization aberrations arise at the instrument level. To directly measure this effect, we construct a dual-rotating-retarder polarimeter around the SCoOB high-contrast imaging testbed to measure its Mueller matrix. With this matrix, we directly characterize the diattenuation, retardance, and depolarization of the instrument as a function of position in the exit pupil. We measure the polarization aberrations in the Lyot plane to understand how polarization couples into high-contrast imaging residuals.

Original languageEnglish (US)
Title of host publicationSpace Telescopes and Instrumentation 2024
Subtitle of host publicationOptical, Infrared, and Millimeter Wave
EditorsLaura E. Coyle, Shuji Matsuura, Marshall D. Perrin
PublisherSPIE
ISBN (Electronic)9781510675070
DOIs
StatePublished - 2024
EventSpace Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave - Yokohama, Japan
Duration: Jun 16 2024Jun 22 2024

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume13092
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Conference

ConferenceSpace Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave
Country/TerritoryJapan
CityYokohama
Period6/16/246/22/24

Keywords

  • Mueller polarimetry
  • coronagraphy
  • polarization aberrations

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'The space coronagraph optical bench (SCoOB): 3. Mueller matrix polarimetry of a coronagraphic exit pupil'. Together they form a unique fingerprint.

Cite this