Abstract
The understanding of the evolution of variable sex determination mechanisms across taxa requires comparative studies among closely related species. Following the fate of a known master sex-determining gene, we traced the evolution of sex determination in an entire teleost order (Esociformes). We discovered that the northern pike (Esox lucius) master sex-determining gene originated from a 65 to 90 million-year-old gene duplication event and that it remained sex-linked on undifferentiated sex chromosomes for at least 56 million years in multiple species. We identified several independent species-or population-specific sex determination transitions, including a recent loss of a Y-chromosome. These findings highlight the diversity of evolutionary fates of master sex-determining genes and the importance of population demographic history in sex determination studies. We hypothesize that occasional sex reversals and genetic bottlenecks provide a non-adaptive explanation for sex determination transitions.
Original language | English (US) |
---|---|
Pages (from-to) | 1-50 |
Number of pages | 50 |
Journal | eLife |
Volume | 10 |
DOIs | |
State | Published - Jan 2021 |
Externally published | Yes |
ASJC Scopus subject areas
- General Neuroscience
- General Biochemistry, Genetics and Molecular Biology
- General Immunology and Microbiology