Abstract
Repair and capping of porous methylsilsesquioxane (JSR LKD 5109) low-k films using a series of trimethylhalosilanes (trimethylchlorosilane-TMCS, trimethylbromosilane-TMBS, and trimethyliodosilane-TMIS) dissolved in supercritical CO2 (scCO2) was studied using Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), spectroscopic ellipsometry, goniometry, and electrical measurements. FTIR results showed that all trimethylhalosilanes reacted with silanol (SiO-H) groups in the fluid and on the surface of oxygen ashed porous methylsilsesquioxane (p-MSQ) films depositing trimethylsilyl -O-Si-(CH3)3 moieties. XPS results showed that no Br and I were detected after processing. Spectroscopic ellipsometry and goniometry showed that the total film thickness and contact angle increased in the series TMCS < TMBS < TMIS. These results indicate that the reactivity increased in the order TMCS < TMBS < TMIS, yet the dielectric constant was in the range of 2.56-2.60 within the limits of experimental error. One interpretation is that the increased thickness and contact angle were the result of self-condensation between trimethylsilanols in the fluid phase, which were formed by reaction of trimethylhalosilanes and water molecules. The dimers produced were strongly physisorbed to the p-MSQ film after processing.
Original language | English (US) |
---|---|
Pages (from-to) | 434-440 |
Number of pages | 7 |
Journal | Microelectronic Engineering |
Volume | 82 |
Issue number | 3-4 SPEC. ISS. |
DOIs | |
State | Published - Dec 2005 |
Keywords
- Porous methylsilsesquioxane
- Restoration
- Supercritical carbon dioxide
- TMBS
- TMCS
- TMIS
- Trimethylhalosilanes
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Atomic and Molecular Physics, and Optics
- Condensed Matter Physics
- Surfaces, Coatings and Films
- Electrical and Electronic Engineering