TY - JOUR
T1 - The osmotic membrane bioreactor
T2 - A critical review
AU - Holloway, Ryan W.
AU - Achilli, Andrea
AU - Cath, Tzahi Y.
N1 - Publisher Copyright:
© 2016 The Royal Society of Chemistry.
PY - 2015
Y1 - 2015
N2 - The osmotic membrane bioreactor (OMBR) is a hybrid biological-physical treatment process that has been gaining interest for wastewater treatment and water reuse. The OMBR couples semi-permeable forward osmosis (FO) membranes for physiochemical separation with biological activated sludge process for organic matter and nutrient removal. The driving force for water production in OMBR is the osmotic pressure difference across the FO membrane between the activated sludge and a concentrated draw solution, which is made with inorganic or organic salts that have a high osmotic pressure at relatively low concentrations. The draw solution becomes diluted during OMBR treatment and may be reconcentrated using reverse osmosis, membrane distillation, or thermal distillation processes. The combination of processes in the OMBR presents unique opportunities but also challenges that must be addressed in order to achieve successful commercialization. These challenges include membrane fouling, elevated bioreactor salinity that hinders process performance, degradation of the draw solution by chemicals that diffuse through the FO membrane, and the potential for simultaneous water, mineral, and nutrient recovery. In this article, results from past and most recent OMBR studies are summarized and critically reviewed. Information about similar and more established technologies (e.g., traditional porous membrane bioreactors and FO) is included to help compare and contrast state-of-the-art technologies and the novel OMBR approach, and to elucidate practical configurations that should be considered in future OMBR research and development.
AB - The osmotic membrane bioreactor (OMBR) is a hybrid biological-physical treatment process that has been gaining interest for wastewater treatment and water reuse. The OMBR couples semi-permeable forward osmosis (FO) membranes for physiochemical separation with biological activated sludge process for organic matter and nutrient removal. The driving force for water production in OMBR is the osmotic pressure difference across the FO membrane between the activated sludge and a concentrated draw solution, which is made with inorganic or organic salts that have a high osmotic pressure at relatively low concentrations. The draw solution becomes diluted during OMBR treatment and may be reconcentrated using reverse osmosis, membrane distillation, or thermal distillation processes. The combination of processes in the OMBR presents unique opportunities but also challenges that must be addressed in order to achieve successful commercialization. These challenges include membrane fouling, elevated bioreactor salinity that hinders process performance, degradation of the draw solution by chemicals that diffuse through the FO membrane, and the potential for simultaneous water, mineral, and nutrient recovery. In this article, results from past and most recent OMBR studies are summarized and critically reviewed. Information about similar and more established technologies (e.g., traditional porous membrane bioreactors and FO) is included to help compare and contrast state-of-the-art technologies and the novel OMBR approach, and to elucidate practical configurations that should be considered in future OMBR research and development.
UR - http://www.scopus.com/inward/record.url?scp=84985021971&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84985021971&partnerID=8YFLogxK
U2 - 10.1039/c5ew00103j
DO - 10.1039/c5ew00103j
M3 - Review article
AN - SCOPUS:84985021971
SN - 2053-1400
VL - 1
SP - 581
EP - 605
JO - Environmental Science: Water Research and Technology
JF - Environmental Science: Water Research and Technology
IS - 5
ER -