The nitrogen chemistry of titan's upper atmosphere revealed

V. Vuitton, R. V. Yelle, V. G. Anicich

Research output: Contribution to journalArticlepeer-review

204 Scopus citations

Abstract

Titan's atmosphere is unique because dissociation of N2 and CH4, the primary atmospheric constituents, provides the H, C, and N atoms necessary for the synthesis of complex organic molecules. The first steps in the synthesis of organic molecules occur in the upper atmosphere where energetic photons and electrons dissociate N2 and CH4. We determine the abundance of a suite of nitrogen-bearing molecules in Titan's upper atmosphere through analysis of measurements of the ionospheric composition made by the Ion Neutral Mass Spectrometer (INMS) on the Cassini spacecraft. We show that the density of ions in Titan's upper atmosphere depends closely on the composition of the neutral atmosphere and that, for many species, measurement of associated ions coupled with simple chemical models provides the most sensitive determination of their abundance. With this technique we determine the densities of C2H4, C4H2, HCN, HC3N, CH3CN, NH3, C2H3CN, C2H5CN, and CH2NH. The latter four species have not previously been detected in the gas phase on Titan, and none of these species have been accurately measured in the upper atmosphere. The presence of these species implies that nitrogen chemistry on Titan is more extensive than previously realized.

Original languageEnglish (US)
Pages (from-to)L175-L178
JournalAstrophysical Journal
Volume647
Issue number2 II
DOIs
StatePublished - Aug 20 2006

Keywords

  • Astrochemistry
  • Planets and satellites: individual (Titan)

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'The nitrogen chemistry of titan's upper atmosphere revealed'. Together they form a unique fingerprint.

Cite this