Abstract
The bile salt, sodium deoxycholate (NaDOC), is a natural detergent that promotes digestion of fats. At high physiologic levels, NaDOC activates many stress-response pathways and induces apoptosis in various cell types. NaDOC induces DNA damage and activates poly(ADP-ribose) polymerase (PARP), an enzyme that utilizes NAD+ as a substrate to repair DNA. NaDOC also induces oxidative stress, endoplasmic reticulum (ER) stress and contributes to protein malfolding. The NAD+ precursors, nicotinic acid (NA) and nicotinamide (NAM) were found to protect cells against NaDOC-induced apoptosis. NA and NAM also decreased constitutive levels of both activated NF-κB and GRP78, two proteins that respond to oxidative stress. However, the mechanism by which NA and NAM protects cells against apoptosis does not involve a reduction in constitutive levels of oxidative stress. NA or NAM treatment increased the protein levels of glyceraldehyde-3-phosphate dehydrogense (GAPDH), a multi-functional enzyme, in the nucleus and cytoplasm, respectively. NAM did not activate the promoter/response elements of 13 stress response genes nor reduce intracellular non-protein thiols, suggesting that it is non-toxic to cells. NAM thus has promise as a dietary supplement to help prevent disorders involving excessive apoptosis.
Original language | English (US) |
---|---|
Pages (from-to) | 314-326 |
Number of pages | 13 |
Journal | Cell Death and Differentiation |
Volume | 7 |
Issue number | 3 |
DOIs | |
State | Published - Mar 2000 |
Keywords
- GRP78
- NAD
- NF-κB
- Nicotinamide
- Nicotinic acid
- PARP
ASJC Scopus subject areas
- Molecular Biology
- Cell Biology