The motion of close-packed red blood cells in shear flow

T. W. Secomb, T. M. Fischer, R. Skalak

Research output: Contribution to journalArticlepeer-review

13 Scopus citations

Abstract

Experimental and theoretical results are presented concerning the motion of close-packed red blood cell suspensions subjected to steady simple shear flow. The behavior of the suspension was observed microscopically using a cone-and-plate rheoscope. At moderate and high shear rates the cells show a fairly orderly arrangement, each appearing polygonal in the field of view. An idealized theoretical model for the suspension is developed, in which each cell is a 14-sided polyhedron of varying shape, but with constant surface area and volume. Tank-treading motion of the membrane is predicted, and a approximation to the motion is calculated which is consistent with the known mechanical properties of the membrane. It is shown that considerably more energy is dissipated in the membrane than in the cytoplasm during tank-treading.

Original languageEnglish (US)
Pages (from-to)283-294
Number of pages12
JournalBiorheology
Volume20
Issue number3
DOIs
StatePublished - 1983

ASJC Scopus subject areas

  • Physiology
  • Physiology (medical)

Fingerprint

Dive into the research topics of 'The motion of close-packed red blood cells in shear flow'. Together they form a unique fingerprint.

Cite this